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Abstract—This paper presents a comprehensive investigation
into the security vulnerabilities associated with speculative
memory access on AMD processors. Firstly, employing novel
reverse engineering techniques, our study uncovers two key
predictors, namely the Predictive Store Forwarding Predictor
(PSFP) and the Speculative Store Bypass Predictor (SSBP), along
with elucidating their internal structures and state machine
designs. Secondly, our research empirically confirms that these
predictors can be deliberately manipulated and altered during
transient execution, resulting in secret leakage across security
domains. Leveraging these discoveries, we propose innovative
attacks targeting these predictors, including an out-of-place
variant of Spectre-STL and an entirely new form of Spectre
attack named Spectre-CTL. Finally, we establish experimentally
that enabling Speculative Store Bypass Disable alleviates the
vulnerabilities. However, this comes at the expense of significant
performance degradation.

I. INTRODUCTION

Speculative execution is an essential approach that effec-
tively reduces performance penalties caused by pipeline stalls.
Branch prediction is a prominent example of speculative
execution, whereby unresolved branches are speculatively
executed using branch predictors. This enables earlier
execution of instructions following the branch, provided that
the prediction is accurate. It’s worth noting that branch
prediction is just one instance of speculative execution, as there
exists another significant category called speculative memory
access. In this type, operations such as data store, data load,
or micro assists are performed before the data address is
generated. This ensures that slow memory access does not
hinder the execution of subsequent instructions.

However, the improper implementation of speculative
memory access can potentially lead to significant security
issues, such as data leakage and data injection. One type
of speculative memory access is facilitated by the Line Fill
Buffer (LFB), which effectively handles cache misses. LFB
holds the load operations that miss in the cache, making the
associated cache line available for other loads. On Intel CPUs,
the LFB performs speculative data forwarding. Even if only
part of the data address matches the tag, the LFB speculatively
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sends the ready data to a load. Such speculative data
forwarding can lead to data leakage, and certain attacks exploit
this behavior in LFB to forward secret data through carefully
constructed faulty loads, as demonstrated in RIDL [48] and
Zombieload [44]. These vulnerabilities are commonly known
as Microarchitectural Data Sampling (MDS) vulnerabilities.
Intel processors have been proven vulnerable to transient
execution attacks exploiting variants of such MDS vulnera-
bilities, such as Cacheout [49], Fallout [14], Crosstalk [42],
and LVI [12]. Fortunately, AMD processors have been found
to be immune to these MDS vulnerabilities [8].

Another important category of speculative memory access
involves store-to-load forwarding (STLF) and store bypassing,
which is the focus of this paper. STLF accelerates loads
that share the same data address as preceding stores; store
bypassing permits out-of-order execution of loads when
preceding stores have not retired. False STLF can give rise to
a new type of transient attack referred to as Spectre-STL [26],
affecting both Intel and AMD processors.

In Spectre-STL, a slow store can be bypassed by a load that
follows it, allowing the data of the store to be transmitted to
the load before the data address is generated, even if the store
and load have different target addresses. As noted in a previous
study [29], Spectre-STL is an in-place attack, which requires
an attacker to repeatedly execute a store-load instruction pair
with the same data address for lots of times before triggering
a false store-to-load forwarding on that store-load pair. This
means the attack requires a shared address space between the
adversary and the victim, which makes it less practical. As
such, it is yet unclear whether practical transient execution
attacks exploiting speculative memory access are feasible on
AMD processors.

Inspired by an AMD white paper that describe predictive
forwarding, which suggests the potential for an out-of-place
attack due to the limited size of predictors [6], the goal of
this research is to conduct a comprehensive investigation into
the security vulnerabilities associated with speculative memory
access on AMD processors. Towards this end, we first reverse
engineer the predictors employed in the speculative memory
access on AMD processors. We uncover the involvement of



two distinct predictors serving different purposes. The first
predictor, comprising three counters, determines whether the
data from a store can be forwarded to a subsequent load
before the store’s data address is generated. As this behavior
corresponds to Predictive Store Forwarding (PSF) [6], we
name this predictor as PSFP (PSF Predictor). The second
predictor, comprising two counters, governs whether a load
can be executed ahead of a slower preceding store and whether
the data is fetched from the store buffer or the data cache.
As this behavior corresponds to Speculative Store Bypassing
(SSB) [2], we name this predictor as SSBP (SSB Predictor).
We further study the state machines and the structures of these
predictors, and identifies the hash function that is used to select
the predictor entries.

Based upon these reverse engineering efforts, we conduct
a systematic analysis of the security of these predictors.
While our experimental results confirm some of the statement
provided in the AMD public document [6], such as both
predictors are isolated between two hyperthreads of the same
physical core and PSFP is flushed during context switches,
our analysis uncovers several new vulnerabilities. First, SSBP
lacks adequate isolation among processes, enabling cross
domain data leakage. Second, SSBP and PSFP can be trained
out-of-place and trigger false predictions, leading to new
variants of Spectre attacks. Third, SSBP and PSFP can be
updated during the transient execution, leading to transient
attacks without the requirements of cache and shared memory.

To effectively showcase the threats posed by these newly
discovered vulnerabilities, we present a series of security
attacks. Specifically, we develop an out-of-place Spectre-STL
attack by training PSFP with an out-of-place store-load pair.
Moreover, we present a novel Spectre attack that exploits
SSBP to trigger transient execution and recover secrets fetched
in the transient window. We call it Spectre-CTL (Cache-To-
Load) since the speculative load fetches data from the cache or
memory during the transient execution. We also show that the
vulnerabilities lead to application fingerprinting across security
domains. Finally, our experimental results suggest that while
Speculative Store Bypassing Disable (SSBD) can mitigate
most of the reported vulnerabilities, it comes at the cost of
significant performance degradation.
Responsible Disclosure. All vulnerabilities discussed in this
paper have been disclosed to AMD’s security team. AMD
has officially acknowledged our findings and confirmed the
existence of these vulnerabilities. Given our study, AMD
has emphasized the critical importance of enabling SSBD to
mitigate data leakage through these predictors.
Contributions. This paper makes several contributions:
• It presents the first comprehensive reverse engineering

effort of speculative memory access predictors, namely
PSFP and SSBP, on AMD processors.

• It performs a systematic security analysis on these
predictors and identifies several vulnerabilities that can be
exploited in typical settings of transient execution attacks.

• It proposes several novel attacks exploiting these
vulnerabilities on AMD processors, including the first

out-of-place Spectre-STL attack and a new Spectre-CTL
attack.

II. BACKGROUND

A. Store Queue and Predictive Store Forwarding

Most modern CPUs that support out-of-order execution
are designed based on Tomasulo algorithm [47]. A store
queue, also known as a store buffer, is used to hold the
address and data of a store that has been issued but not yet
completed. The store queue guarantees that memory writes
are performed in order, and prevents pipeline stalls caused
by slow memory writes. By asynchronously handling memory
writes while executing other independent instructions, the store
queue effectively hides the latency of memory writes. On
AMD CPUs, the size of the store queue varies across different
microarchitectures. For instance, the store queue has up to 48
entries on AMD 17th family CPUs [4], and up to 64 entries
on AMD 19th family CPUs [3].

Store-to-load forwarding, based on the store queue, is a
widely recognized technique that speeds up memory access
in read-after-write (RAW) scenarios. When a load instruction
has the same address as a preceding store instruction, the
load can retrieve the data directly from the store after the
address of the store has been generated but before the store
completes. To further improve the performance for store-
to-load forwarding, AMD implements a technique called
Predictive Store Forwarding (PSF). PSF uses a predictor to
anticipate whether a load has the same address as a preceding
store. If the prediction indicates a match, the data from the
store is directly forwarded to the load even before the data
address of the store is generated [6]. The design of this
predictor, which we refer to as PSFP, has not been publicly
disclosed. We uncover its design and functionality in our study.

B. Predictive Store Bypass

Read-after-write does not always occur for every contiguous
store-load pair. If the RAW does not occur, the load should
bypass the store queue and obtain data from cache or memory.
However, in certain cases, the data address of the store is
generated slow, and the CPU cannot determine whether an
RAW occurs for the store-load pair in a short time. For a
correct execution, the CPU has to stall the load until the data
address of the preceding store is generated, which causes the
performance losses.

In order to avoid such stalls and speed up the load, a store
bypass predictor known as memory disambiguation unit is
involved on Intel and ARM CPUs [34], [41] to predict whether
the load is aliasing with the store (i.e., the store and load
target the same address). The common design of this predictor
is shown in Fig 1. The predictor consists of a buffer with
numerous entries, and each entry contains a counter-based
state machine (f1) that predicts whether a load is aliasing
with its preceding stores. The load selects the entry based
on its instruction address (f2). The update of the chosen state
machine depends on whether an RAW occurs (f3).
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Fig. 1. The common structure and organization of the store bypass predictor
on modern CPUs.

AMD claims that the speculative store bypass (SSB)
technique is implemented on their processors [2]. However,
apart from a brief patent [40], AMD has not publicly disclosed
the presence of a predictor similar as memory disambiguation
unit that is specifically designed for a predictive store bypass.
We uncover this predictor in our study, which we refer to as
SSBP. Our study reveals that the structure and organization of
SSBP share similarities with the illustration shown in Fig 1,
but the key functions f1 and f3 are significantly different
from those disclosed on Intel and ARM CPUs. We present
our findings in the subsequent sections of this paper.

III. REVERSE ENGINEERING PSFP AND SSBP

In this section, we present our effort to uncover the
design and organization of PSFP and SSBP. Particularly,
PSFP (Predictive-Store-Forwarding Predictor) is used in the
predictive store forwarding and SSBP (Speculative-Store-
Bypass Predictor) is a predictor used in the speculative store
bypass.

A. Experiment Setup

Our experiments is conducted on 4 AMD CPUs including
AMD Ryzen 9 5900X, AMD EPYC 7543, AMD Ryzen 5
5600G, and AMD Ryzen 7 7735HS.

We start with a simple microbenchmark shown in Listing 1.
The microbenchmark includes a function named stld, written
in amd64 assembly. This function employs a store-load pair to
trigger the utilization of speculative memory access predictors,
PSFP and SSBP. This setup allows SSBP to determine whether
the load can be executed without waiting for the store, and

1 stld:
2 .rep 20
3 imul $1, %rdi ; delayed store DA generation
4 .endr
5 mov $0x0, (%rdi) ; store
6 mov (%rsi), %rax ; load
7 .rep 20
8 imul $1, %rax ; data-dependent calculations
9 .endr

10 ret

Listing 1. A microbenchmark for reverse engineering the predictors.

PSFP to determine whether the store data can be forwarded
to the load before the data address is resolved.

In Listing 1, register rdi holds the data address of the
store, and rsi holds the data address of the load. To facilitate
the observation of time differences under different prediction
outcomes, we use another 20 imul instructions to delay the
address generation of the store data. As the execution port
is limited [1], [10], even minor pipeline stalls during the
load operation lead to substantial time differences. Similar to
the previous work [23], we use RDPRU instruction to obtain
cycle-level execution time of our microbenchmark. RDPRU
demonstrates a remarkably stable timing. The noise rate
consistently remains below 1%. Consequently, all experiment
results reported below represent a stable time reading from
RDPRU that do not require special noise reduction.

For ease of representation, we denote an aliasing stld
with the same value in rdi and rsi as a, and a non-
aliasing stld with the different values in rdi and rsi as
n. According to the document [7], the difference between the
two values is greater than 4, so that the CPU treats them as
different data addresses. Additionally, we indicate the multiple
execution times of stlds with a number ahead. For example,
sequence (7n, a) means we execute 7 non-aliasing stlds and
then execute an aliasing stld.

B. State Machine

1) Execution type: In order to analyse different execution
types resulting from various predictions, we measure the
execution time of each stld in sequence (40n, 40a, 40n, 40a).
Fig 2 displays the time distribution, revealing six types of
execution time. By comparing the prediction outcomes and
the ground truth, we further classify the execution type into 8
categories. Type A, B and C occur when the prediction of the
store-load pair as aliasing is correct, while type D, E and F
occur when the prediction of the store-load pair as aliasing is
incorrect. Type G occurs when the prediction as non-aliasing
is incorrect, and type H occurs otherwise.

To further analyse the cause of different execution time, we
use some events in Performance Monitor Counters (PMC) [5].
Some of the typical events are listed in Fig 2. For type A, B,
E and F , the prediction is aliasing, and the first event presents
that the load is stalled until the data address of the store is
generated. On the other hand, for type G and H , the prediction
is non-aliasing, and the load bypasses the store without any
stalls. For type A, B and G, the truth is aliasing, and the
second event presents that the load fetched its data from the
store queue. For type E, F and H , the truth is non-aliasing,
and the load fetches the data from the data cache or memory.
Type C is quite special and no PMC events reveal its unique
behavior. Since the prediction is aliasing, and the execution of
type C is less than type A and type B, we infer that predictive
forwarding occurs in this type, which will be demonstrated in
the following section. For type D and G, the execution takes
more than 240 cycles, since a rollback is triggered, and the
CPU has to fetch and dispatch the instructions following the
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Fig. 2. Execution time and execution type analysis of the store-load pair in
repeated sequences (40n, 40a).

load after flushing the pipeline. The other three events in Fig 1
demonstrate that the rollback happens.

2) Method to reverse engineer the state machine: Having
identified the 8 execution types, we proceed to reverse
engineer the state machine of these predictors. Specifically, we
investigate the execution types for each stld when provided
with a sequence of arbitrary n and a.

We assume the predictor is designed as a finite state
machine, which has several states and each transition between
two states have one input and one output. The input is a
stld function (i.e. n or a), and the outcome is an execution
type with a corresponding typical execution time (i.e. A to
G). For ease of representation, we denote the state machine
as ϕ. For example, given a state s, the execution types
for sequence (7n, a) are (7H,G), which is presented as
ϕs(7n, a) = (7H,G). For brevity, we omit s in the rest of
this paper.

Initially, we model the state machine using a single counter,
which is initialized to 0. Next, we detect the execution types of
a sequence by measuring the CPU execution time and adjust
the state machine to align with the actual execution outcomes.
For example, we observe that ϕ(n, a, 7n) = (H,G, 4E, 3H),
which means that the counter in our model, we denote as C0,
is updated to 4 after an input of a, and it decreases by 1 after
an input of n. The corresponding outcomes for inputs n and a
when C0 = 0 are H and G, respectively. Additionally, when
C0 > 0, the outcome for input n is E.

The state machine is updated and becomes more and more
complicated as we consider more sequences. In some cases,
the structure of the state machine has to be updated in
accordance to our new findings. For example, we observe that
ϕ(a, 4n, a, 4n, a, 16n) = (G, 4E,G, 4E,G, 15F,H). This
sequence shows that another counter is used to record how
many types G have happened. However, we cannot model
this behavior using only one counter. Therefore, we introduce
another counter, which we denote as C4. When C4 reaches 3,
no less than (15n) has to be executed to make the prediction
as aliasing back to non-aliasing.

3) Counter-based state machine: By collecting numerous
sequences and modifying the state machine model, we finally
get the state machine shown in TABLE I. The input of the
state machine is a store-load pair, either non-aliasing (n) or
aliasing (a), the outcome is an execution type, and the counters
is updated according to current state and the input. The state
machine consists of 5 counters with 7 states. We classify the
states based on the outcomes and update ways of the state
machine model. The state machine can successfully model the
behavior of more than 99.8% sequences generated randomly.

According to TABLE I, counter C0 and C3 determine
whether the prediction is aliasing or non-aliasing. The
prediction is non-aliasing only when both C0 and C3 are equal
to 0. In this situation, we have ϕ(n) = (H) and ϕ(a) = (G).
For the latter, a rollback occurs and changes the prediction
from non-aliasing to aliasing. Counter C1 records how many
types D have occurred. A block state is triggered after type
D occurs twice. In the block state, the prediction will always
be aliasing and both SSB and PSF are disabled. Counter C2

determines whether to make store forwarding aggressive (i.e.
forwarding before the address of the store data is generated).
The store forwarding becomes aggressive after executing at
least (4a). In the PSF-enabled states, we have ϕ(a) = (C) and
ϕ(n) = (D). For the latter, a rollback occurs and changes the
prediction from aliasing to non-aliasing. Counter C4 records
how many types G have occurred. To change the prediction
from aliasing to non-aliasing, at least (4n) is required when
C4 is smaller than 3. Otherwise, at least (15n) is required if
C4 reaches 3.

C. Selection of Predictor Entries

In the previous experiments, we use a stld with fixed
instruction addresses, and uncover the combined state machine
of the speculative memory access predictors. However, a
predictor commonly consists of numerous entries. Each entry
contains a state machine with several counters, and is selected
by the instruction address, such as the branch predictor [22]
and memory disambiguation unit [30]. In this section, we study
how the speculative memory access predictors are organized
on AMD CPUs. Specifically, we focus on how stlds with
different instruction addresses select the entries, and we show
our discovery that the counters can be further divided into 2
groups that have different organizations.

1) IPA-dependent selection: On Intel CPUs, the instruction
virtual address (IVA) of the load determines which entry to
select [41]. However, we cannot observe a similar design on
AMD CPUs. To identify the selecting function, we design the
following experiments in the Linux kernel.

First, we fix the instruction address of stld and change the
data address of the store and load randomly. We find that the
same entry is always selected and updated, which indicates
that the selection is independent with the data address of a
store-load pair. Second, we use the fork function to create
a new child process with the same address layout with its
father process. Due to the Copy-on-Write [11], the stld of
the father process and child process share the same IVA and



TABLE I
STATE MACHINE OF SPECULATIVE MEMORY ACCESS PREDICTORS

State Machine Non-aliasing Store-load Pair (n) Aliasing Store-load Pair (a)
Type Counter Update Type Counter Update

[Initialize]
(C0 = 0, C1 = 0, C2 = 0, C3 = 0, C4 = 0)

H No Changes G C0 ← 4, C1 ← 16, C2 ← 2,

C3 ← if C4 < 3 then 0 else 15, C4 ← C4 + 1

[Block]
(C0 > 0, C2 = 0, C3 = 0)

E No Changes A No Changes

[Load From Cache]
(C0 = 0, C2 > 0, C3 = 0)

H No Changes G C0 ← 4, C1 ← 16, C2 ← 2,

C3 ← if C4 < 3 then 0 else 15, C4 ← C4 + 1

[Load From Store Buffer, PSF Enabled, S1]
(C0 > 0, C1 ≤ 12, C2 > 0, C3 = 0)

D
C0 ← C0 − 1,

C1 ← C1 + 4,

C2 ← C2 − 1

C *C0 ← if C1&3 = 3 then C0 + 1 else C0,

C1 ← C1 − 1

[Load From Store Buffer, PSF Disabled, S1]
(C0 > 0, C1 > 12, C2 > 0, C3 = 0)

E C0 ← C0 − 1,

C1 ← C1 + 4
A C0 ← if C1&3 = 3 then C0 + 1 else C0,

C1 ← C1 − 1

[Load From Store Buffer, PSF Disabled, S2]
(C1 > 12, C3 > 0 or C0 = 0, C1 ≤ 12, C3 > 0)

F
C0 ← C0 − 1,

C1 ← C1 + 4,

C3 ← C3 − 1

B
C0 ← if C1&3 = 3 and C0 > 0 then C0 + 1 else C0,

C1 ← C1 − 1,

**C3 ← if C0 > 0 then C3 − 1 else C3 + 16

[Load From Store Buffer, PSF Enabled, S2]
(C0 > 0, C1 ≤ 12, C2 > 0, C3 > 0)

D
C0 ← C0 − 1,

C1 ← C1 + 4,

C3 ← C3 − 2

C
C0 ← if C1&3 = 3 and C0 > 0 then C0 + 1 else C0,

C1 ← C1 − 1,

C3 ← if C0 > 0 then C3 − 1 else C3 + 16

* C0 ≤ 4 always holds. ** C3 ≤ 32 always holds.

physical address (IPA), and we observe that the stld in these
processes select the same entry. Third, in the child process,
we write some dummy data to the page that contains the
stld by calling the mprotect function, which makes this
page executable. As a result, although the stld of the father
process and child process still have the same IVAs, the IPAs
are now different since the kernel remaps the page of the child
process. This time, we cannot observe the selection collision ,
which indicates that the physical address has an effect on the
selection. Finally, we use a shared memory that holds the stld
by calling the mmap function in two processes. Now the stld
has the same IPA and different IVAs in these processes, and
we observe the collision. Therefore, we can conclude that the
selection of the entry depends on the IPA of the stld.

2) Hash function: Since the IPA is up to 48 bits, the size
of the predictors is too large if the whole IPA is used to
select the predictors, and a hash function may be used to
compress the IPA before selecting. To prove this, we use a
code sliding method to collect the collision addresses (i.e.
stld at these addresses select and update the same entry), as
shown in Fig 3. We first fix a stld at an address. Then we
obtain the machine code of the stld, and fill the machine code
into a set of contiguous pages that are mapped using mmap
function. After that, we execute the stld at the fixed address
using the sequence (7n, a, 7n, a, 7n, a), and then execute the
sliding code using the sequence (15n). We check whether the
collision occurs by observing ϕ(15n). If ϕ(15n) = (15F ), the
collision occurs. Otherwise, the collision does not occur, and
we add the entry address of the stld one byte, so that the IPA
moves one byte within the page for the next attempt.

By collecting numerous IPAs that select the same entry, we
reverse engineered the hash function. We observe that different
bits of two colliding addresses at a stride of 12 exhibit identical

size of stld

size of a page

target address
1 byte

offset of load A�empts

fixed address

Collision
𝜱 𝟏𝟓𝒏 = 𝟏𝟓𝑭 𝟕𝒏,𝒂,𝟕𝒏,𝒂,𝟕𝒏,𝒂

Fig. 3. Code sliding to find collision for the predictors.

0x16fbe4d2f =
0x16ebe5d2f =

0b 0001 0110 1111 1011 1110 0100 1101 0010 1111
0b 0001 0110 1110 1011 1110 0101 1101 0010 1111

0x1a53be5bf =
0x1b77bc1af =

0b 0001 1010 0101 0011 1011 1110 0101 1011 1111
0b 0001 1011 0111 0111 1011 1100 0001 1010 1111

0x20abd1e7f =
0x1c3df1b96 =

0b 0010 0000 1010 1011 1101 0001 1110 0111 1111
0b 0001 1100 0011 1101 1111 0001 1011 1001 0110

Collide

Collide

Collide

xor 12, 24 ≝ bit12 ⊕ bit24 0x16�be4d2f = bit12 ⊕ bit24 0x16ebe5d2f = 1

xor 4, 28 = 1, xor 10, 22 = 1, xor 13, 25 = 1

xor 0, 24 = 1, xor 3, 27 = 0, xor 5, 17 = 1, xor 6, 30 = 1, xor 7, 31 = 0,
xor 8, 32 = 0, xor(10, 22) = 1

Fig. 4. Mathematical characteristics of the colliding address pairs.

XOR values. For instance, the XOR values of the 12th bit and
the 24th bit in the first two colliding address pairs depicted in
Fig 4 are both 1. We hypothesize that bits at intervals of 12 can
be grouped together to determine the hashed value. We verity
our hypothesis through an extensive examination of colliding
addresses. Based on our analysis, the hash function consists
of 12 xor operations, with each xor being performed on 4
bits of the IPA at a stride of 12 bits. For example, one of the
output bits is the result of xor on the 1st, 13th, 25th and 37th



bits of a given IPA. In addition to the hash function, we find
that the IPA of the load inside the stld, instead of the IPA of
stld entry, determines whether the collision occurs.

3) IPA dependence for different counters: In the analysis
of hash function, we only study the collision of C3 because
of the sequence we choose. Now we extend our study to other
counters. To better label the stlds with different IPAs and
hashed values, we denote them as ny

x and ayx, where x and y
represent the hashed value of the load IPA and the store IPA,
respectively. For example, n0

0 and n0
1 have the same hashed

value of the store IPA and different hashed values of the load
IPA. Particularly, n and a represent n0

0 and a00.
We present some of the important experiments and their

corresponding results in TABLE II. Each experiment is
conducted with carefully constructed stld sequences that
modify the tested counters. For example, when studying
the selection mechanism of C3, we use the sequence
(7n, a, 7n, a, 7n, a, 6a10, 35n). The prefix (7n, a, 7n, a, 7n, a)
sets C3 to 15. The following a10 has the same hashed value of
the load IPA and different hashed value of the store IPA with
a. If we observe that ϕ(6a10, 35n) = (6F, 9F, 26H), we can
conclude that C3 is selected by the load IPA only. Otherwise,
if we observe that ϕ(6a10, 35n) = (6H, 15F, 20H), we can
conclude that the selection of C3 dose not depend on the
load IPA only. Since the result shows that ϕ(6a10, 35n) =
(6F, 9F, 26H), we can conclude that C3 is selected solely
by the hashed value of the load IPA.

The other experiments in TABLE II can be analysed in a
similar way. We find that C0, C1 and C2 are selected by the
hashed values of both the store IPA and the load IPA, while
C3 and C4 are selected by the hashed value of the load IPA
only. Therefore, The first 3 counters are in the same entry,
and support the predictive store forwarding, while the last 2
counters are in another entry, and support the predictive store
bypassing. Thus, we conclude that C0, C1 and C2 belong to
PSFP and C3 and C4 belong to SSBP.

D. Organization of Predictors

We further study the organization of PSFP and SSBP
respectively.

1) Organization of PSFP: We already know that the hashed
values of both the store IPA and the load IPA are used to
select the PSFP entry, and each entry consists of 3 counters.
Besides, according to the document [6], PSFP is flushed during
a context switch. As a result, it is reasonable to assume that
PSFP has a small size. Otherwise, the performance overhead
of flushing this predictor would be too high to be acceptable.

To reverse engineer the size of PSFP, we use the
sequence (7n, a, 7n, a, 7n, a, 40nj0

0 , aj1i1 , a
j2
i2
, aj3i3 , ..., a

jk
ik
, 5n),

where each i and j are non-zero and differ from each other.
The prefix (7n, a, 7n, a, 7n, a) initializes an entry of the PSFP,
which we denote as the base entry. The stld whose hashed
values of the store and load IPAs are both 0 selects the base
entry. For the base entry, the prefix sequence sets its C0 to 4.
Next, (40nj0

0 ) is executed to clear C3 selected by both nj0
0 and

n (i.e. n0
0), which avoids the effects of SSBP. Note that nj0
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Fig. 5. Eviction rate of PSFP and SSBP under different eviction sizes.

have no effects on the base entry, because the hashed values
of the store IPA are different from a and it selects a new PSFP
entry instead of the base entry.

Then we randomly use k different stlds to prime the PSFP
and try to evict the base entry. By changing k, we effectively
build an eviction set with different sizes and observe which
size of the eviction set is capable of evicting the base entry.
Finally, we observe the execution types of the last (5n) by
measuring the execution time. If we observe that ϕ(5n) =
(4E,H), the base entry is not evicted. Otherwise, we have
ϕ(5n) = (5H) and the base entry is evicted.

The experiment results are shown in Fig 5. When the
eviction size is less than 11, the base entry is not evicted,
while when the eviction size is larger than 11, the base entry
is consistently evicted. Therefore, we can conclude that the
size of PSFP is 12. Since the hashed values in the eviction set
are random, it is likely that PSFP is implemented as a 12-entry
fully associative buffer, with two 12-bit tags corresponding to
the hashed value of the store and load IPAs.

2) Organization of SSBP: We design similar experiments
to study the organization of SSBP. The results are shown in
Fig 5. Unlike PSFP, SSBP has a complex selection mechanism,
and we cannot determine the exact size due to the absence of
an abrupt change in the eviction rate. However, we observe
some typical changes corresponding to the eviction set size.
For example, the eviction rate exceeds 50% when the eviction
size is 16, and reaches 90% when the eviction size is 32.

3) Summary: We summarize the organization of PSFP and
SSBP in Fig 6. The 48-bit IPAs of the store and load serve as
the input to a hash function, resulting in a 12-bit compressed
output. The PSFP is 12-way fully associative, consisting of 3
counters C0, C1 and C2, with the hashed IPAs of both the store
and load serving as the tags. The SSBP consists of 2 counters
C3 and C4, and has a more complex selecting function F2.
These 5 counters are combined to form a prediction regarding
whether the store-load pair is aliasing and whether to forward
the store data to the load before the data address is generated.
According our experiments, all 4 AMD Zen 3 CPUs in our
study share the same design of PSFP and SSBP.

IV. SECURITY ANALYSIS OF PSFP AND SSBP

In this section, we conduct an in-depth analysis of the
security of PSFP and SSBP. We conduct empirical experiments



TABLE II
SOME IMPORTANT EXPERIMENTS FOR STUDYING THE COUNTER ORGANIZATION

Counter Experiments Dependence

C0
seq 7n 1a 7n 1a 7n 1a 4a 1n 4a 1n 3a 6n1

0 35n store IPA load IPA
type 7H 1G 4E 3H 1G 4E 3H 1G 4B 1D 4B 1D 3B 6H 5E 30H ✔ ✔

C1
seq 7n 1a 6n1

0 35n 7n1a 6a10 35n - store IPA load IPA
type 7H 1G 1G 4E 1C 4E 31H 7H 1G 6E 32F 3H - ✔ ✔

C2
seq 5a 1n 7n0

1 5a01 1n0
1 42n 5a 1n 7n0

1 5a01 1n0
1 35n store IPA load IPA

type 1G 4E 1D 7H 1G 4E 1D 4E 38H 1G 4E 1D 7H 1G 4E 1D 35E ✔ ✔

C3
seq 7n 1a 7n 1a 7n 1a 6a10 35n - - store IPA load IPA
type 7H 1G 4E 3H 1G 4E 3H 1G 6F 9F 26H - - ✗ ✔

C4
seq 4n 7n1

0 1a10 39n 7n1
0 1a10 39n 7n1

0 1a10 35n store IPA load IPA
type 4H 7H 1G 39H 7H 1G 39H 7H 1G 15F 20H ✗ ✔
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Fig. 6. Overview of the organization of PSFP and SSBP.

TABLE III
CPU AND KERNEL INFORMATION IN VULNERABILITIES ANALYSIS

Processor Microcode Kernel
AMD Ryzen 9 5900X

(Zen 3) 0xA201205 Linux 5.15.0-76-generic

AMD EPYC 7543
(Zen 3) 0xA001173 Linux 6.1.0-rc4-snp-

host-93fa8c5918a4
AMD Ryzen 5 5600G

(Zen 3) 0xA50000D Linux 5.15.0-76-generic

AMD Ryzen 7 7735HS
(Zen 3+) 0xA404102 Linux 5.4.0-153-generic

on four platforms (TABLE III) to answer the following
questions:

1) Are the predictors well isolated between security do-
mains, e.g., user-kernel isolation and host-VM isolation?

2) Can the predictors be trained out-of-place deterministi-
cally? In other words, can we find a collision between
the predictions of different store-load pairs?

3) Can the predictors trigger a transient window with
attacker-controlled values?

4) Can the predictors be updated during the transient
execution?

A. Breaking Isolation

In the in-place experiments, we use a shared executable
page between two different security domains. We specifically

consider three security domains: a user process in the host
OS, a process inside a VM, and a kernel thread. We repeat
the following experiments for all three pairs of security
domains. We fill a stld in the shared page, train the
predictors using this function in a domain, and probe it
using this function in the other domain. For PSFP, we use
the sequence (7n, a, 7n, a, 7n, 5a, n, 4a, n, 3a) to train the
predictor because it sets C0 to 5 and clears C3. Then we
probe PSFP with the sequence 5n. For SSBP, we use the
sequence (7n, a, 7n, a, 7n, a) to train the predictor, and probe
it with sequence (32n). In the out-of-place experiments, we
use PTEditor [39] to get the IPA from a given IVA, and find
collisions between 2 stlds in different address space. Then we
use the same sequences mentioned before to observe the state
changes of these predictors.

Our experiments confirm that PSFP is well isolated.
However, SSBP is not isolated between two security domains,
allowing one domain to leak data from another domain.
Furthermore, we find that PSFP is flushed during a context
switch due to a system call or the yield function, which
matches the information provided in the official document [6].
However, SSBP is not affected by the context switch, and
retains the legacy data from the previous process. Additionally,
both SSBP and PSFP are flushed if the process is suspended
due to a sleep function.

We also study the isolation between two Simultaneous
Multi-Threading (SMT) threads by running two processes in
two hyperthreads, and find that both SSBP and PSFP are
partitioned amongst SMT threads, and thus the activity of one
SMT thread does not influence the other thread’s predictors. To
investigate how CPUs manage the resources of these predictors
between the SMT threads, we repeat the experiment mentioned
in Section III-D after switching the CPU from SMT mode to
single-thread mode. We do not observe a significant change
in the eviction size, suggesting that the predictors might be
duplicated resources [46].

Vulnerability 1: SSBP is not isolated between two security
domains, which means the data from a security domain may
be leaked to another domain.
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Fig. 7. Collision finding for PSFP and SSBP.

B. Finding Collisions

According to Section III-C, a specially designed hash
function takes an IPA as the input and compresses it into a
12-bit value before selecting the predictors. We show that it
is easy to find hash collisions for PSFP and SSBP.

1) Collision For SSBP: According to Section III-C, two
stlds select the same SSBP entry when the hashed values
of their load IPA are the same. Assume the hash function
is implemented as the way in Fig 6, and we need to find a
collision with a given IPA, whose physical page frame is F
and page offset is O. Now we prove that the collision for this
given IPA can always be found in any executable pages.

The hashed value of the given IPA has 12 bits, and we
denote it as h. The ith bit of h can be calculated as:

hi = Oi ⊕ Fi ⊕ Fi+12 ⊕ Fi+24

for each i from 0 to 11, where ⊕ is an xor operation. For a
random page P with its physical page frame denoted as F ′,
the ith bit of its hashed value h′ is:

h′i = x⊕ F ′i ⊕ F ′i+12 ⊕ F ′i+24

where x is ith bit of its page offset. Given that the page frame
of P is fixed, F ′i ⊕ F ′i+12 ⊕ F ′i+24 is a fixed value. Therefore,
for each i from 0 to 11, it is satisfiable for the ith bit in the
page offset of P to make hi = h′i. In other words, it requires
at most 4096 attempts to find an IPA in any pages that selects
the same SSBP entry with another IPA.

To further verify it, we measure the distribution of the
number of attempts to find a collision, and the results are
shown in the left part of Fig 7. The figure shows that the
distribution of the number of attempts follows a Gaussian
distribution with an approximate average of 2200.

2) Collision For PSFP: Unlike SSBP, PSFP is selected
using both the store and load IPAs. The hashed values of the
store and load IPAs serve as the tags to select the PSFP entry,
making it much more difficult to find a collision for PSFP.

An intuitive idea is that the distance between the store IPA
and the load IPA matters whether a collision can be found. To
prove it, we measure the average number of attempts required
to find a collision for different IPA distances. A portion of

the results is shown in Fig 7. The collision can always be
found when the IPA distances are the same for two stlds, but
the collision may not be found (i.e. number of attempts are
more than the upper threshold) if the distances are different.
Therefore, it is better to keep the distance equal so that the
collision of PSFP can be found deterministically.

Vulnerability 2: Collisions for PSFP and SSBP can be
deterministically found, and at most 4096 attempts are
required to find a collision for SSBP, which means out-
of-place attacks are feasible using these predictors.

C. Transient Execution

Based on the state machine and organization of the
speculative memory access predictors, we can train any entries
of these predictors to any states and trigger the mispredictions.
In this section, we study the behavior of the CPU when a
misprediction of PSFP or SSBP occurs.

As shown in Fig 8, we delay the data address generation
of the store by performing time-consuming calculations or
loading the data address from memory (1). This allows the
predictors to be used to predict whether the load can bypass
the store and whether the data of the store can be forwarded
to the load before its address is generated. For simplification,
assume that the DPA of the store is 0xaa, and the data is 0xdd.
The DPA of the load is 0xaa (2a) or 0xbb (2b) in different
cases. The memory 0xaa contains the value 0xcc.

By training the predictors, we can trigger a misprediction
of PSFP (3a) or SSBP (3b). In the misprediction of PSFP, the
DPA of the store is predicted as 0xbb, and a predictive store
forwarding is performed (4a). In the misprediction of SSBP,
the DPA of the store is predicted as another value that is not
equal to 0xbb, and then a speculative store bypass is performed
to load the data from the data cache or memory (4b).

Before the data address of the store is generated, the
CPU does not stall the following instructions, but continues
to consume the incorrectly loaded data (5). Since the CPU
will find the misprediction and reissue the load later, the
execution is referred to as the transient execution. To observe
the loaded data in the transient window, we use the cache side
channel [50] to recover it. When the data address of the store
is generated, the CPU identifies a misprediction and triggers
a rollback to eliminate the effects of the transient execution
(6). After the rollback, we recover the data in the transient
window by timing the cache access.

The results indicate that 0xbb is loaded in the transient
window triggered by PSFP, and 0xcc is loaded in the transient
window triggered by SSBP. Therefore, both predictors can be
misused to trigger the transient execution, during which an
unexpected value is loaded and consumed.

D. Transient Update

A lot of studies focus on searching microarchitecture covert
channels that can be used to recover the data in a transient
window. The new covert channels are proposed to bypass the



Vulnerability 3: Both PSFP and SSBP can be misused
to trigger the transient execution with an incorrect loaded
value, which means an attacker can control any malicious
data as an address to fetch secrets using PSFP and SSBP.
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Fig. 8. Transient Execution of PSFP and SSBP.

cache-related defenses [9], [43], make timing easier [34], [51],
and expand available gadgets [14], [17]. This inspires us to
study whether PSFP and SSBP can serve as the covert channels
for transient execution attacks.

As shown in Fig 9, we trigger a transient window in
different ways, including a branch misprediction, a faulty
load, and a speculative memory access misprediction. In
the transient window, we execute a store-load pair and try
to update the states of PSFP or SSBP. After the transient
execution, we probe the state of PSFP or SSBP using a stld
that selects the same entry of PSFP or SSBP. The results show
that both predictors can be updated in any kind of transient
windows, and the update is not rolled back.

Vulnerability 4: Both PSFP and SSBP can be updated
during the transient execution and the updates to these
predictors are not rolled back, which means that these
predictors can be used to construct covert channels for data
transmition during transient execution.

V. EXPLOITATION

In this section, we propose novel attacks against AMD’s
SSBP and PSFP, which includes two new variants of Spectre
attacks, out-of-place Spectre-STL and Spectre-CTL, on AMD
Zen 3 processors. We also show that SSBP can be misused to
perform application fingerprinting.

A. Threat Model

We assume that an attacker and a victim use the same AMD
Zen 3 CPU, and the attacker aims to leak secrets, such as the
secret data and secret-dependent control flow, from the victim.
We do not make any special assumptions about the victim, who
can be a normal application or a kernel thread running on any
versions of operating system and microcode.

branch mispredic�on

memory access mispredic�on

faulty load

Transient Window

store
load
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update ?
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Fig. 9. Transient Execution of PSFP and SSBP.

For most of attacks, we assume that the attacker is a
normal user without root privilege. The attacker can execute
unprivileged instructions such as mfence, clflush and
rdpru. rdpru provides the cycle-level timing method,
allowing the attacker to measure the execution of any code.
Without root privilege, the attacker cannot use both PTEditor
and pagemap of Linux to get the physical address directly,
but has to find the collision by probing the PSFP or SSBP
counters.

B. Out-of-place Spectre-STL

Spectre-STL, also known as Spectre V4, has been
discovered on AMD CPUs [13]. AMD further claims that
Spectre-STL can be executed by misusing a predictor [6].
However, the exploitation is limited to a single process because
the predictor is flushed during a context switch. In this paper,
we proves that Spectre-STL’s implementation is restricted to a
single process by uncovering the design and security features
of PSFP.

Beside being an inner-process attack, current research also
suggests that Spectre-STL can only be exploited in-place [13].
This implies that the attacker needs to execute the same store-
load pair multiple times within the victim’s address space,
so that a false store-to-load forwarding is performed by that
particular store-load pair. While AMD claims that out-of-
place exploitation is possible, since the associated PSFP is not
publicly available, no research has yet discovered a method
to implement Spectre-STL using a different store-load pair
within the attacker’s address space and under the attacker’s
full control.

In this paper, we first propose an out-of-place approach to
misuse PSFP and implement Spectre-STL on AMD Zen 3
CPUs, which extends the attack surface. Both in-place and out-
of-place Spectre-STL require the same gadget in the victim’s
address space as shown in Listing 2. In the gadget, a store that
targets address &array2 + (idx << 12) is performed
with the data x. Then three loads are performed following the
store. The first load fetches the data from address &array2,
and the fetched data serves as a new address in the second load
to fetch another data stored in &array1 + array2[0].
The third load encodes the data fetched by the second load
into a cache line, which is a common way to implement the
Flush+Reload cache side channel [50].

For in-place attack, in order to train PSFP, the attacker
sets idx to 0 and executes a lot of victim_function.
For out-of-place attack, however, the attacker tries to find
another store-load pair that is fully controlled in attacker
space, and trains PSFP, so that only one execution of
victim_function is required for leaking each secret. The



1 void victim_function(size_t x) {
2 array2[idx * 4096] = x;
3 temp = array2[array1[array2[0]] * 4096];
4 }

Listing 2. Gadget in Spectre-STL.

code sliding mentioned in Section III-C is used to find the
collision for PSFP. The attacker needs to carefully control the
distance of store and load IPAs to be the same with the store-
load pair in victim_function.

After training, PSFP will predict the store-load pair in
victim_function as aliasing. The attacker now sets idx
to another value, sets x to reach the address of secret, and
executes the victim_function. The attacker flushes idx
from the cache to delay the store, and creates a transient
window, as shown in Fig 8. In the transient execution, x will
be forwarded to the first load, and the second load fetches
the secret from &array1 + x. The secret will be encoded
to a cache line by the third load. Finally, the attacker uses
Flush+Reload to recover the secret.

In our implementation, we use 16 pages to search for the
PSFP collision, achieving a collision-finding rate of over 90%.
We test the accuracy and bandwidth of out-of-place Spectre-
STL by leaking 10,000 randomly generated bytes in a user
process. The accuracy achieved is 99.95%, with the attack
leaking an average of 416 bytes per second (B/s).

C. Spectre-CTL

Spectre-STL, as mentioned earlier, has several limitations.
Firstly, the forwarded data is stored in a register, making it easy
to being overwritten by other instructions. This necessitates
the store operation to be in close proximity to the victim
load to be effective. Secondly, Spectre-STL is constrained to
operate within a single process. Even though our study extends
the attack from in-place to out-of-place, the isolation of
PSFP among different processes prevents its application across
process boundaries. Thirdly, the recovery of the secret relies
on a cache side channel, requiring the secret to be multiplied
by a large value in the gadget so that it is distinguishable
across different cache lines.

In this section, we present a novel Spectre Attack named
Sepctre-CTL, which overcomes the limitations of Spectre-STL
by leveraging SSBP. The gadget of Spectre-CTL is illustrated
in Listing 3, where the secret address is not required in the
gadget, and the secret is not required to multiply a large
number, which makes it more feasible to find the gadget within
the victim’s code.

1) Spectre-CTL Attack in C Code: The attack process
is shown in Fig 10. Similar to Spectre-STL, Spectre-CTL
requires one store and three loads in the victim’s address
space. During the train phase, the attacker tries to discover two
collisions with the first and the third load of the victim through
code sliding. Upon finding these collisions, the attacker
proceeds to train the relevant SSBP entries by clearing C3

1 void victim_function() {
2 array2[idx] = 0;
3 temp = array2[array1[array2[idx2]]];
4 }

Listing 3. Gadget in Spectre-CTL.

so that a misprediction as non-aliasing will occur. Then the
attacker sets the first loaded data as the secret’s address.

After training, the attacker executes the victim function with
idx=idx2. The store is delayed by evicting idx from the
cache, and SSBP gives a misprediction that the first load can
bypass the store and fetch data from the cache or memory.
In the transient window, the second load fetches the secret.
Subsequently, the third load treats the secret as an address,
updates the second SSBP entry. C3 in this entry is updated to
15 if the secret is equal to idx, and remains 0 otherwise.

The leak phase is finished when the CPU detects the
misprediction and triggers a rollback. Then the attacker probes
the second SSBP entry in the recover phase. If the execution
type F is observed, it indicates that the secret is equal to idx,
signifying a successful recovery of the secret.

In Spectre-CTL, for each secret byte, the attacker is required
to attempt at most 256 values of idx to successfully recover
the secret. Due to the complex hash function, very little
noise is induced in Spectre-CTL. We test the accuracy and
bandwidth of Spectre-CTL by leaking 10,000 bytes randomly
generated bytes. The accuracy achieved is 99.97%, with the
attack leaking an average of 384 bytes per second (B/s).

Spectre-CTL is much more powerful than Spectre-STL, as
it offers a broader scope of applicability and more extensive
attack capabilities. Spectre-CTL can be implemented out-of-
place and even across different processes, as SSBP is not
isolated for individual processes. We successfully exploit the
attack to leak secrets from another process or kernel thread.
Moreover, despite being named Spectre-CTL, the first load
that bypasses the store in the transient window can also
fetch data from the memory if the cache miss occurs. This
flexibility allows the attacker to control the secret address
array2[idx2] through various data injection techniques,
such as Rowhammer [25]. By incorporating such methods,
the attacker’s capabilities are further amplified, making the
attack more formidable and posing a higher threat level to the
targeted system’s security.

2) Spectre-CTL Attack in Web Browser: In this section,
we demonstrate that Spectre-CTL is a practical and powerful
attack in web environments, by implementing the Spectre-CTL
attack in Chrome version 86 on AMD Zen 3 CPUs.

Firstly, we verify that the SSBP state can be detected
within a web browser. To accomplish this, we implement
a high-resolution timer directly within the browser, capable
of achieving a timing level at about 10 nanoseconds. This
timer enables us to measure the execution time of stld in the
web context. We implement stld by using WebAssembly for
its flexibility. Our experiment demonstrates that SSBP side
channel attack is practical in the context of web browser, and
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Fig. 10. Overview of the Spectre-CTL Attack.

1 function spectreCTL(trash) {
2 spectreArgs[argsIdx[16 * 256]] = 0;
3 return probeArray[((
4 (spectreArray[spectreArgs[0]]) >> bit
5 ) & 1 ) * 0x800];
6 }

Listing 4. JavaScript Gadget in Spectre-CTL.

is an alternative to the commonly used Evict+Reload covert-
channel in the browser.

The prior work, leaky page [45], has already demonstrated
that JavaScript can be used to implement Spectre-V1 [29],
enabling the leakage of information from the browser’s
memory. In our research, we implement the Spectre-CTL
attack in web by modifying the code in leaky page. In specific,
we change the gadget from a branch bound check to a store-
load pair, which is shown in Listing 4.

In the train phase, we set spectreArgs[0] to zero and
set argsIdx[16 * 256] to a non-zero value so that the
store and load is non-aliasing. We perform numerous non-
aliasing store-load pairs to clear C3 of the relevant SSBP entry,
which ensures that SSBP predicts the store and load as non-
aliasing. In the subsequent attack phase, we assign the address
of the secret to spectreArgs[0] and set argsIdx[16
* 256] to zero. A misprediction occurs during the execution
of spectreCTL, and the secret is fetched in the transient
window. Our Spectre-CTL attack in the web browser has the
capability to achieve a data leakage rate of approximately 170
B/s, with the accuracy as 81.1%.

D. Side Channel Impact of SSBP

In addition to transient attacks, SSBP can also be exploited
to implement side-channel attacks in two ways. Firstly,
because SSBP is not flushed during context switches, the
control flow of the load instruction within one process, which
has the potential to leak certain secrets [16], can be disclosed
to another process via SSBP. Secondly, the hash function
contains information about the physical address and may
unintentionally leak address mapping from virtual to physical
addresses, which is inaccessible to a regular user process in
the user space. In this section, we use process fingerprinting
to demonstrate the first kind of side channel impact of SSBP.

vgg16 googlenet squeezenet

resnet18 seresnet18 xcep�on

Fig. 11. Fingerprinting results of machine learning model using SSBP side
channels.

As the SSBP is selected by the load IPA, and the physical
address of the load is not controllable for an unprivileged
attacker, it is impossible to observe the execution of a specific
load. However, it is still effective to exploit SSBP to build
the fingerprinting of a process. To achieve it, we use the code
sliding to traverse the entire space of SSBP entries, which
amounts to a total of 4096 entries. During each probe round,
we collect the C3 values of each entry, ranging from 0 to 35.
Subsequently, we analyse the relative frequency of each data
value and aggregate them into a vector containing 35 elements.
Each element in the vector represents the relative frequency
of the corresponding value, ranging from 0 to 1, and the sum
of all elements in the vector totals to 1.

To demonstrate that the fingerprinting is practical and
useful, we collect the fingerprinting of different machine
learning models. The tested CNN models are running in a
victim process, and the attacker binds the probe process on the
same CPU. For each probe round, the attacker uses the sleep
function to yield the CPU. Fig 11 displays the fingerprinting
results for 6 distinct CNN models. Several noticeable features
can be observed directly from the figure. For instance, the
relative frequency of value 5 is distinguishable among vgg16
(0.16), googlenet (0.22), resnet18 (0.20), and sersnet18 (0.25).
To quantify these differences and differentiate among the
different models, we employ the support vector machine
(SVM) provided by the sklearn module to classify the
models based on their relative frequency vectors. This
classification approach yields an accuracy of over 95.5%,
indicating the effectiveness of our fingerprinting technique in
successfully distinguishing among the various CNN models.

VI. DEFENSE

A. Disable Speculation with SSBD and PSFD

AMD has provided a system register SPEC_CRTL to
control the speculative execution, including the speculative
memory access [7]. In specific, the 2nd bit of SPEC_CRTL,
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Fig. 12. Performance evaluation of SSBD on SPEC2017.

known as Speculative Store Bypass Disable (SSBD), deter-
mines whether the speculative store bypass is disabled. When
this bit is set, any load is serialized and must wait until the
preceding stores are fully resolved, which includes generating
and translating the data addresses.

We conducted experiments using specific stld sequences
to investigate whether SSBD can effectively defend against
the vulnerabilities mentioned in this paper. We observe that,
for all sequences, we have ϕ(n) = E and ϕ(a) = A. This
behavior aligns with the block state presented in TABLE I,
and thus we can conclude that SSBD fixes all of the SSBP
and PSFP entries on the block state. Since the SSBP entries
are at the block state, the attacker cannot detect timing
differences among stld sequences, and the side channels
among different processes are prevented. In addition, the stores
and loads are serialized, making it impossible to trigger an
exploitable transient window, which prevents both Spectre-
STL and Spectre-CTL attacks.

Unfortunately, enabling SSBD has considerable effects on
CPU performance, as it introduces stalls for non-aliasing
loads. As a result, SSBD is disabled by default in the
Linux kernel. To assess the performance overhead of SSBD,
we conduct an evaluation using SPEC2017 benchmarks. We
executed 10 benchmarks from SPECrate with SSBD disabled
or enabled for all CPUs on AMD Ryzen 9 5900X. The
execution results can be seen in Fig 12. The evaluation reveals
that, for most benchmarks, there is a significant performance
overhead when SSBD is enabled. In some cases, the overhead
exceeds 20%, as seen in benchmarks like perlbench and
exchange. In summary, despite the effectiveness of SSBD
in mitigating vulnerabilities related to PSFP and SSBP, the
notable performance degradation cannot be ignored.

Nevertheless, it is worth noting that Predictive Store
Forwarding Disable (PSFD) might not mitigate these attacks.
Specifically, AMD offers an additional control of predictive
store forwarding, i.e., the 7th bit of SPEC_CRTL known
as PSFD. However, in all experiment setups outlined in
TABLE III, we find that the predictors continue to function
even when PSFD is enabled, which suggests that the attacks
proposed in this paper cannot be effectively mitigated. We will
further investigate the implementation of PSFD and analyze
the reasons in our future work.

B. Other Potential Mitigations

Although disabling speculation is a straightforward mitiga-
tion, the significant performance loss will hinder their adoption
in production systems. We outline a few potential mitigation
strategies below.
Develop a secure timer. Developing a more secure timer by
introducing timing noise or reducing timing accuracy [18],
[38] can effectively render timing differences unobservable,
so that the predictor states cannot be probed.
Flush SSBP during context switch. Flushing SSBP during
context switches can mitigate cross-process attacks that exploit
SSBP, and the associated overhead can be controllable [16].
Randomize selection. Incorporating randomization into the
organization of SSBP and PSFP can mitigate most out-of-place
attacks because finding collisions between entries becomes
more challenging, as demonstrated in secure cache and branch
predictor designs [31], [35], [52].

VII. RELATED WORK

A. Transient Execution Attacks

Since 2018, the year of Spectre [29] and Meltdown [33],
a lot of transient execution attacks have been found
on Intel, AMD and ARM processors. The related study
mainly focuses on: (1) new ways to trigger the transient
window, such as ret2spec [37], machine clear [41] and a
series of MDS attacks [12], [14], [42], [44], [48], [49];
(2) new ways to recover data in the transient window,
such as SmotherSpectre [10], mwait [51] and Speculative
interference [9]. In this paper, our study covers both aspects
and extends the Spectre attack with two new variants,
including the out-of-place Spectre-STL attack and Spectre-
CTL attack.

B. Side Channel Attacks

Side channel attacks on CPU microarchitecture have been
widely studied. Vulnerabilities have been disclosed on a
lot of CPU predictors and buffers, including decode string
buffer [20], [43], branch predictor [22], [28], load store
unit [15], [34], execution port [1], [23], translation look-aside
buffer [24], [32] and cache [19], [36]. Due to the complexity
of SSBP, there is little study focusing on this predictor, and
our study first uncover the side channels that exploit SSBP.

C. Memory Disambiguation Units on Intel and ARM

Predictors used in speculative memory access are mentioned
in both patents from Intel [30] and AMD [40], but limited
information about the design and organization of these
predictors are provided. The first reverse engineering effort
on Intel’s memory disambiguation units (MDU) is reported in
a blog post [27], where well-designed microbenchmarks are
used to demonstrate the existence of these predictors on x86
processors. Another post [21] conducts a similar experiment
to reverse engineer the MDU design on Intel Skylake CPUs.
Based on these findings, Ragab et al. [41] systematically
analyses the design and organization of MDU on Intel CPUs.
The study also finds that MDU can be misused to trigger



TABLE IV
CHARACTERIZATION OF MDU AND SSBP

Characterization Intel [41] ARM [34] AMD
(Our Work)

Feasible State
Machine Size 4 bit 1 bit 6 bit (C3) + 2

bit (C4)

Selection
Lowest 8 bits

of the load
IVA/IPA

Lowest 16
bits of the
load IVA

Hashed value
of the whole

load IPA

transient execution. However, it does not investigate whether
MDU is effectively isolated among different security domains.

MDUs are also available on ARM processors. Liu et
al. [34] uncovers the MDU design on ARM and utilizes MDU
to construct side-channel attacks across different security
domains. However, Liu et al. [34] did not discuss whether
MDU can be used to trigger transient execution.

Our paper significantly extends the prior studies in two
aspects. First, it investigates the SSBP design on AMD
processors. While SSBP on AMD is similar to MDU
on Intel and ARM, our work shows that the design of
SSBP is considerably more complicated. TABLE IV provides
characterizations of the SSB predictors on Intel, ARM and
AMD CPUs. The size of the state machine of SSBP is
larger than that of MDU, and the selection of SSBP depends
on a complex hash function that considers the entire load
IPA, rather than just a portion of the lowest bits of IVA.
Second, our work performs a comprehensive analysis on the
exploitability of SSBP in various attack settings. Specifically,
it examines the capability of SSBP in performing both cross-
domain attacks and transient execution attacks, which bridges
the gaps between prior studies.

VIII. CONCLUSION

In this paper, we present our investigation efforts and
research findings on the security of speculative memory access
on AMD processors. Our study has led to better understanding
of two predictors, namely PSFP and SSBP, in terms of both
their internal organization and their security properties. Our
study also presents novel out-of-place Spectre-STL attack and
the first Spectre-CTL attack on AMD processors.
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APPENDIX A
ARTIFACT APPENDIX

A. Abstract

The artifact comprises two Proof of Concepts (PoCs):
the out-of-place Spectre-STL attack detailed in Section V-B
andthe Spectre-CTL attack detailed in Section V-C. These
PoCs are implemented based on our reverse engineering anal-
ysis of SSBP and PSFP, including the state machine presented
in Section III-B and the selection mechanism outlined in
Section III-C. Building upon the reverse engineering and
security analysis, we propose the attacks following the process
illustrated in Fig 8. In the out-of-place Spectre-STL attack,
we mistrain PSFP to trigger the store-to-load forwarding
transient execution and use Flush+Reload cache side channel
to recover the secret bytes fetched in the transient window. In
the Spectre-CTL attack, we mistrain SSBP to trigger the store
bypass transient execution and use SSBP as the covert channel
(as shown in Fig 9) to recover the secret byte. The PoCs
are easy to build and execute, requiring no special software
environment. We validate the effectiveness of the PoCs in all
the environments listed in TABLE III.

B. Artifact check-list (meta-information)
• Algorithm: Code sliding (Section III-C and Section IV-B)

for collision finding, specific stld memory access sequences
(Section V) for predictors mistraining, and SSBP covert channel
(Section IV-D) for secret recovering

• Program: Out-of-place Spectre-STL attack and Spectre-CTL
attack PoCs

• Compilation: gcc

• Run-time environment: x86-64 Linux Kernel
• Hardware: AMD Zen3 CPUs
• Execution: Execute an executable file
• Output: Command line string
• Experiments: Leak secrets through out-of-place Spectre-STL

attack and Spectre-CTL attack
• Publicly available: Yes
• Code licenses (if publicly available): Apache-2.0 License
• Data licenses (if publicly available): None
• Archived: DOI 10.5281/zenodo.10199277

C. Description

1) How to access: The PoCs can be accessed from Zenodo:
https://zenodo.org/records/10199277 or from Github: https://
github.com/CPU-THU/Spectre-V4-ng.

2) Hardware dependencies: The PoCs depend on SSBP
and PSFP functionalities specific to AMD Zen 3 CPUs, and
CPUs with a design similar to that of SSBP and PSFP are
anticipated to execute the PoCs successfully. We have tested
the PoCs successfully on four CPUs listed in TABLE III.

3) Software dependencies: A C compiler is required. For
example, we use gcc 9.4.0 with make 4.2.1 to build
the PoCs. No specific kernel or package dependencies and
installations are required.

D. Installation

No specific installations are required. We recommend to use
the Makefile in the artifact to build the executable files.

E. Evaluation and expected results

The PoCs demonstrate the transient execution vulnerabilities
of PSFP and SSBP. In the out-of-place Spectre-STL attack,
the PoC demonstrates the step-by-step process of leaking
the victim’s secret string byte by byte by finding the
collision of PSFP, mistraining PSFP, and triggering transient
execution. In the Spectre-CTL attack, the PoC showcases the
process of leaking the victim’s secret string byte by byte by
finding the collision of SSBP, mistraining SSBP, triggering
transient execution, and recovering secrets using SSBP. For
more detailed information on the attack implementation and
expected results, please refer to the README files.
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