
Overtake: Achieving Meltdown-type Attacks with
One Instruction

Yu Jin†, Pengfei Qiu†§∗, Chunlu Wang†, Yihao Yang†

Dongsheng Wang‡§, Xiaoyong Li†, Qian Wang¶, Gang Qu∥

†Key Laboratory of Trustworthy Distributed Computing and Service (BUPT), Ministry of Education, Beijing, China
‡Tsinghua University, Beijing, China §Zhongguancun Laboratory, Beijing, China
¶Lehigh university, PA, USA ∥University of Maryland, College Park, MD, USA

lambda.jinyu@gmail.com, {qpf, wangcl}@bupt.edu.cn, khaosyg@gmail.com
wds@tsinghua.edu.cn, lixiaoyong@bupt.edu.cn, wangqian2010bupt@gmail.com, gangqu@umd.edu

Abstract—In early 2018, the Meltdown attack was reported,
which steals secret data by loading and then encoding them into
the cache covert channel during the invisible transient executions.
After that, a set of Meltdown-type attacks are proposed; those
attacks largely threaten the security of modern processors.

In this study, we review Intel’s x86-64 Instruction Set Ar-
chitecture (ISA) and find two vulnerable instructions (CMPSB
and SCASB) that can be exploited to achieve the Meltdown-type
attacks with few instructions. Especially, the CMPSB instruction
itself is enough to implement the core part of the Meltdown-
type attacks. We design a special cache-based and Performance
Monitor Unit (PMU)-based covert channel to recover the secret
data for the two instructions. In our experiments, we demonstrate
the availability of the two instructions by implementing the
Meltdown and ZombieLoad attacks with them. Compared to
the original Meltdown-type attacks, the proposed attack can
be considered as an attack that does not rely on the transient
executions from the perspective of the macro instruction level
because no more macro instruction is executed after triggering
the exception. Therefore, we name our attacks Overtake. Our
experiments indicate that the average data leakage speed of
Overtake attack could reach 770.1 KB/s with an error rate of
0.4 %.

Index Terms—Meltdown, processor security, transient execu-
tion, instruction set architecture, secret data leakage

I. INTRODUCTION

Modern processors integrate advanced technologies to opti-
mize the instruction pipelines for high performance, including
out-of-order execution, speculative execution, and Microarchi-
tectural Data Sampling (MDS), etc. These technologies enable
processors to execute subsequent instructions before previous
instructions have retired. In situations where the processor
determines that these later instructions should not have been
executed, it will revert the execution to maintain correctness.
Such rollbacks occur when exceptions are triggered during
out-of-order execution [1], mispredictions happen in specu-
lative execution [2], or when microcode-assisted operations
are needed in MDS [2]. This process of executing “invisible”
instructions is known as transient execution.

Lipp et al. [1] disclose a processor vulnerability related to
transient execution driven by out-of-order execution in 2018.

∗Corresponding author

This vulnerability can cause data-related cache side-effects,
and the processor does not roll back such effects after the
transient execution. They proposed the Meltdown attack to
exploit this vulnerability, giving attackers the opportunity to
gain unauthorized access to the secret data through transient
execution and bring this “invisible” data to the architecture
level. Since then, several Meltdown-type attacks have been
proposed and implemented, such as Foreshadow, Fallout,
RIDL, and ZombieLoad [3]–[6]. Unfortunately, complete re-
pairs at the software level have proven difficult [7], and these
transient execution attacks pose serious threats to mainstream
processors.

The process of transient execution attacks [8] encompasses
primarily four key steps: (1) crafting a microarchitecture
(µarch) state to establish a cache covert channel; (2) utilizing
data-access instructions to load confidential information; (3)
generating cache side-effects by accessing a specific cache
unit correlated with the secret data; and (4) extracting the
secret data by analyzing the cache side-effects. Steps (1) and
(4) serve as conventional techniques to establish the cache
covert channel, enabling the transfer of secret data from the
microarchitecture (µarch) to the architecture (arch) domain.
Steps (2) and (3) are the key steps of transient execution
attacks. In step (2), an exception is provoked due to the
unauthorized access of secret data by the attacker. Notably,
step (3) is transiently executed to encode the secret data
into cache side-effects even if step (2) is not fully executed
(retired). These steps are designed based on the fact that
current transient execution attacks need to use multiple macro
instructions to achieve steps (2) and (3) respectively.

In this study, our hypothesis revolves around the potential
efficacy of combining step (2) and step (3) into a singular
instruction, which could potentially circumvent the widely
advocated software-based mitigations and offer novel insights
into microarchitecture (µarch) security. Motivated by this
hypothesis, we meticulously analyze Intel’s ISA [9] to identify
instructions that exhibit µarch effects once secret data has
been retrieved from memory. We refer to these instructions
as potentially vulnerable instructions. Through investigation
and empirical experiments, we unearth two such vulnerable



instructions: CMPSB and SCASB. Given that these instructions
determine how secret data is encoded, the development of
specialized covert channel mechanisms becomes imperative.
To this end, we construct both a cache covert channel and a
Performance Monitoring Unit (PMU) covert channel to leak
secrets using those instructions. We successfully utilized both
of the two vulnerable instructions to implement Meltdown-
type attacks across multiple Intel processors, including Melt-
down and ZombieLoad. We named this novel attack Overtake
because it accomplishes complex attack objects through a
few instructions. Additionally, these instructions trigger more
micro-operations (µOPs) to be emitted in comparison to other
instructions at the decode front end of the processor.

Through experiments, we demonstrated that the µOPs gen-
erated by a single macro instruction are sufficient to exe-
cute the transient phase of the Meltdown attack. Once the
exception is triggered at the transient level, no additional
execution of macro instructions is necessary. When comparing
the byte-level bandwidth performance with paper Overtake, we
achieved a noteworthy bandwidth ranging from 34.1 KB/s to
770.1 KB/s in different scenarios shown on the Intel i7-7700
processor. Our experimental results also demonstrated that
any processors that are vulnerable to Meltdown-type attacks
are also susceptible to our Overtake attack. Moreover, our
investigation confirms the utility of both cache timing-based
and PMU-based covert channels in recovering secret data
within the context of the Overtake attack.

In summary, our work makes the following contributions:
• We identify two susceptible instructions (CMPSB and
SCASB) in the x86-64 ISA that can be leveraged for
Meltdown-type attacks.

• Given the complex operations of these two instructions,
effectively recovering the secret data becomes a signifi-
cant challenge.

• We have effectively deployed the Overtake attack to
execute conventional Meltdown-type attacks on four dis-
tinct Intel processors, encompassing both Meltdown and
ZombieLoad vulnerabilities.

II. BACKGROUND

A. Instruction Set Architecture and Microarchitecture
Instruction Set Architecture (ISA) defines the CPU’s ab-

stract model and how it is controlled by macro instructions.
Complex instruction sets such as x86-64 allow single in-
structions to execute several low-level operations in order to
simplify development, improve performance, reduce program
size, etc. The term µarch refers to how a processor implements
its ISA, including the decoding frontend, execution backend,
and memory subsystem. The design of a CPU’s µarch plays a
significant role in determining the efficiency and performance
of the processor [10]. Resulting in variations in performance,
power consumption, and other aspects, such as security. Most
ISAs provide a mechanism known as PMU to monitor the
processor’s performance. Unfortunately, PMU has also been
exploited as a covert channel for transient execution attacks
[11].

B. Cache Side-Channel

Modern processors utilize multi-level caches to improve
performance [10]. The cache line can be associated with
different memory addresses in the main memory, marked by
the Translation Lookaside Buffer (TLB). Since caches are
shared resources for multi-process and multi-physical cores,
they pose security risks as attackers can exploit them to infer
secret information. Various cache side-channel attacks have
been proposed in the past decades, including Flush+Reload
[12], Prime+Probe [13], etc. These attacks can be utilized as
high-performance covert channels.

C. Transient Execution Vulnerabilities

Transient execution is considered an architectural “invisi-
ble” execution because it would not retired or committed by
the processor. In certain processor design implementations, the
transient execution can handle unexpected data before being
granted authorization. This architectural behavior has been
exploited by attacks like Meltdown and Spectre, which have
garnered significant attention after being disclosed. Moreover,
the out-of-order execution and speculative execution optimized
mechanisms employed in modern processors may trigger tran-
sient execution, potentially leading to vulnerabilities. Attackers
can exploit these vulnerabilities by utilizing cache covert
channels or other covert channels, potentially resulting in the
leakage of sensitive µarch data.

III. OVERVIEW OF OVERTAKE

In this section, we present Overtake, which achieves the
Meltdown-type attack with only one or two macro instructions.

A. Inspiration

As shown in Fig. 1, during the front-end instruction decode
step for the x86-64 architecture (arch), a single instruction
could be decoded into several µOPs [14]. These µOPs can then
be executed out-of-order in the back end if there is no data
dependency and the execution unit is idle. The existence of
µOPs enables a singular macro instruction to execute complex
operations, facilitating the potential for out-of-order execution.

In Order Frontend

Micro-Instruction Translation Engine
(MITE, Legacy Path)

L1 Instruction 
Cache
(L1i)

REPE 
CMPSB Queue

Out-of-Order Backend

. . .

Execution Units
Memory 

SubsystemRename / 
Allocate / 

Retire

Scheduler
prefetch / load µOPµop

µOP
µop

µop
µOP

µOP

µOP

µOP Cache

Fig. 1: In Intel’s x86-64 chip, the REPE CMPSB instruction
is decoded into several µOPs. These µOPs are then executed
out-of-order in the backend if their requirements are met.



B. Assumption and Threat Model

The threat model for Overtake attack is similar to Meltdown
[1] and Zombieload [6]. In this model, we assume that the
attacker can execute the instructions on the same machine
as the victim, for the attack using cache covert channel, the
attacker process operates in an unprivileged environment and
exploits the Overtake attack to extract confidential information
from the victim process’s memory, including data from kernel
memory or µarch data sampling. As for using the PMU covert
channel, the attacker is privileged.

C. Vulnerable Instructions

In a Meltdown-type attack, a critical functional instruction
needs to trigger an exception and enable data leakage through
memory access. The original core code of Meltdown [1],
shown at the beginning of Listing 1, obtains the secret data in
line 2 and then left-shifts the secret data, encoding it into the
cache covert channel in lines 3 and 4. We have identified two
vulnerable instructions, namely CMPSB and SCASB. When
combined with the REP prefix to form a complex instruction,
they can serve as a facility for achieving a Meltdown-type
attack in one or two instructions, as demonstrated at the end
of Listing 1 for CMPSB. Unlike previous work that focuses
on speculate operations [15] for Spectre-type attacks, which
are also a subset of transient execution attacks orthogonal to
Meltdown-type attacks, we focus on their capability to achieve
Meltdown-type attacks with cache and PMU covert channels.� �
1 ; Original code of Meltdown
2 ;RCX = kernel address, RBX = probe array
3 MOV AL, BYTE [RCX]; Trigger Exception
4 SHL RAX, 0xC
5 MOV RBX, QWORD [RBX + RAX]
6
7 ; Overtake using CMPSB
8 ;RSI = kernel address, RDI = test value address
9 REPE CMPSB; Trigger Exception� �

Listing 1: Comparison of Transient Execution Code

The REPE and REPNE are REP prefixes that can be added
to string instructions to repeat them several times, as specified
in the RCX count register or the indicated condition of the
EFLAGS register is no longer met.

a) CMPSB: Compares two memory operands of byte
size and sets the status flags in the EFLAGS register according
to the results. The source operands are located in memory and
specified by the RSI and RDI registers. The source operand
registers for memory load would automatically increment or
decrement based on the DF flag.

b) SCASB: Is used to compare a byte in memory spec-
ified by the RDI register with the value in the AL register
and sets the status flags in EFLAGS accordingly. Similar to
CMPSB, the source operand register RDI would be automati-
cally incremented or decremented based on the DF flag.

D. Attack Steps

To execute a transient execution attack, we need to trigger
and cope with an exception that creates a transient execution

window that allows us to gain and send µarch information to
the arch through a covert channel. We discuss our three attack
steps as follows:

test value

secret memory

... ???? ???? ???? ???? ...

Accessible Data that In Cache

Accessible Data that Not In Cache

Equal (Match)

Unmatch

... 0010 1010

... 0010 1010

???? ???? ...

... ???? ????

... 0010 1010

???? ???? ...

... 0010 1010

REPE CMPSB

PMU

Cache
Timing

Flush
or 

Evict 
Cache

Microarchitecture Transient Execution

Inaccessible Secret Data

① ② ③

Fig. 2: Illustration of how CMPSB leaks secret data. If the
test value is equal to the secret (match), the cache timing for
the probe cache block would be much faster, which will also
produce a different PMC difference value for some events.

1) Prepare the attack environment, which includes setting
up the covert channel by flushing or evicting the cache,
recording the Performance Monitoring Counter (PMC),
etc.

2) Execute the attack instruction to trigger the exception
and handle it. During this process, a transient attack
window is created, allowing access to illegal secret data.

3) In the final step, the attacker receives information from
the covert channel. This is accomplished by probing the
cache state or recording the PMC value.

In detail, as shown in Fig. 2 and Listing 2 with stage
annotated, for the cache covert channel, we allocate two
continuous blocks (pages) of memory. Next, we flush the
second block out of the cache, while keeping the first block
in the cache. The last byte of the first block is set to different
test values, and then the only attack instruction REPE CMPSB
is executed to encode the secret data into the states of the
second block. If the test value in the last byte of the first block
matches the secret data, the second block will be loaded into
the cache during transient execution. Otherwise, the second
block would not be cached. Finally, we can recover the secret
data by distinguishing whether the second block is cached,
which can be achieved by measuring the access time of the
second block. As for the PMU covert channel, we don’t need
to probe the state of the second block memory on the arch.
Instead, we analyze the changes in the PMC in different test
values.

IV. OVERTAKE MELTDOWN-TYPE ATTACK IMPLEMENT

In this section, we demonstrate how we utilize CMPSB
and SCASB instructions to achieve our goal of conducting
a Meltdown-type attack within one or two macro instructions.
We refer to these attacks as Overtake Meltdown and Overtake
Zombieload.

A. Attack Template

For convenience, we have unified both the Flush+Reload
and PMU covert channels into a single template that can be



used to covertly transfer µarch data during transient execution
into the arch. The template is presented in Listing 2. In this
template, Line 4 and Line 8 are used to record the PMC values
before and after transient execution, respectively. Line 10
corresponds to the reload step of the Flush+Reload. The attack
gadget is incorporated as the Transient Execution Gadget.� �
1 for (test_value=0; test_value < 255; test_value++) {
2 *(basic_addr - 1) = test_value; // (1)
3 flush(basic_addr); // For Covert Channel |
4 s_pmc = pmu_get_rdpmc(pmu_id); // (1)
5 if (xbegin() == (˜0u)) { // or !setjmp(jbuf)
6 // Transient Execution Gadget (2)
7 }
8 e_pmc = pmu_get_rdpmc(pmu_id); // (3)
9 if (reload_t(basic_addr) < cache_threshold) // |

10 cache_channel[test_value]++; // |
11 pmu_channel[test_value] = (e_pmc - s_pmc);} // (3)� �

Listing 2: Pseudocode for Covert Channel Template.

As mentioned in Section III-D, the basic_addr-1 and
basic_addr represent the addresses of the last byte of
the first block and the first byte of the second block, re-
spectively. We place the test_value at the address of
basic_addr-1 and then ensure that the next memory block
is kept out of the cache by flushing basic_addr. By
utilizing the attack template, we can successfully decode the
channel data into pmu_channel and cache_channel at
the same time.

B. Gadget of Overtake Meltdown

As shown in Listing 3, we utilize CMPSB and SCASB
instructions to achieve Meltdown [1]. The secret_addr
represents the Linux kernel direct mapping address of the se-
cret data. Since the attacker does not have privileged access to
secret_addr, an exception is triggered. By combining with
the RPEE prefix, the CMPSB instruction will execute repeat-
edly and prefetch the subsequent data until the EFLAGS.ZF
flag is set to zero. If the value at secret_addr equals the
value at basic_addr-1, it triggers the prefetch to the next
memory block. Otherwise, the EFLAGS.ZF flag will be set
to zero, ceasing the REPE execution. The transient behavior
of SCASB is similar to that of CMPSB.� �
1 // Overtake Meltdown one instruction gadget
2 asm ("REPE CMPSB\n"::
3 "RSI"(secret_addr+offset),"RDI"(basic_addr-1));
4 // Overtake Meltdown two instruction gadget
5 asm ("MOV (%%RBX), %%EAX \n"
6 "REPZ SCASB\n"::
7 "RBX"(secret_addr+offset),"RDI"(basic_addr-1));
8 // Overtake Zombieload one instruction gadget
9 flush(mapping_addr);

10 asm ("REP CMPSB\n"::
11 "RSI"(mapping_kaddr),"RDI"(basic_addr-1));� �

Listing 3: Pseudocode for Transient Execution Gadget.

C. Gadget of Overtake Zombieload

We utilize CMPSB to achieve Zombieload [6] showed in
Listing 3. The mapping_addr is a pointer to a legal
memory, and the mapping_kaddr is a pointer to the Linux
kernel direct mapping address of mapping_addr. Line 7

will cause a faulting load as it runs in unprivileged mode.
Since we have flushed the mapping_addr in advance, there
is no corresponding data in the cache that can be loaded for
Line 7 during transient execution, but the Intel processor will
radically forward the stale data in Line Fill Buffer (LFB) in
transient execution, so it will transiently obtain the in-flight
data of other programs LFB. If the in-flight data is equal
to the test value, the cache block of basic_addr would
be prefetched. We demonstrate that CMPSB also has MDS
optimization.

V. EXPERIMENT AND EVALUATION

A. Environment Setup and Test Coverage

We have listed our tested environments in Table I. The
Overtake Meltdown and Overtake Zombieload attacks were
successfully implemented on Intel Xeon 6133, Core i7-6700,
i7-6800, and i7-7700 processors. As the primary aim of Over-
take is not to break through existing mitigation, we disabled
the kernel page-table isolation (KPTI, a.k.a KAISER) during
our experiments.

B. Experiment Stages

Firstly, we utilize the cache covert channel to verify the
feasibility of achieving the Overtake attack on the target ma-
chine. Subsequently, we optimize the attack code to improve
throughput and reduce error rates. Once the optimization is
completed, we consolidate the findings into an attack template.
To obtain available PMU events, we developed a PMU auto-
matic traversal and evaluation tool. This tool facilitates testing
the PMU events provided by Intel to identify exploitable
events. Leveraging the attack template developed earlier, we
are able to rapidly test PMU events with high efficiency.

C. Throughput and Error Rate

As the CMPSB and SCASB can only produce byte-level
checks which require at most 28 retries to match the checks.
If the attacker knows the data range of secret data will greatly
reduce the number of retries needed. To better evaluate the
performance ceiling, we assume there are three levels of range
for secret data: (1) only contain ASCII char from 48(‘0’) to
57(‘9’) which means 10 retries are required, (2) only contain
ASCII of printable char that from 32 (‘SP’) to 126 (‘˜’)
which means 94 retries required, (3) random bytes that range
from 0 to 255. For better performance and lower noise, we
use Intel Transactional Synchronization Extensions (TSX) to
cope with the execution. Replacing the TSX with the system
exception signal handler could achieve a similar result but
require thousands of retries to reduce high noise, resulting
in a decline in the final speed.

For our Overtake Meltdown using CMPSB, we try to leak
1k random chars at their level above from another process
and record the error rate. We define error rate as stealing the
incorrect number of bytes divided total number of bytes. The
original Meltdown could achieve speed up to 582 KB/s. For
Overtake, in Intel i7-7700 CPU, we can achieve 770.1 KB/s
with only an error rate as low as 0.4 % at level 1, 88.9 KB/s



TABLE I: Tested environments. A ‘✓’ indicates that we have achieved an attack or carried out a specific analysis.

Setup Processor µarch Linux Kernel Overtake Meltdown Overtake Zombieload Speed Analysis PMU Analysis

Desktop Xeon 6133 Sky Lake 5.10.0-0 ✓ ✓ - -
Desktop i7-6700 Sky Lake 4.15.0-142 ✓ ✓ - ✓
Desktop i7-6800 Sky Lake 5.4.0-146 ✓ ✓ - -
Desktop i7-7700 Kaby Lake 5.4.0-150 ✓ ✓ ✓ ✓

TABLE II: PMU events that can be utilized to leak 1k random characters with an error rate lower than 5%.

Instruction Event Code Event Name #PMC if Match #PMC if Unmatch Error Rate (%)
µ σ µ σ

REPE
CMPSB

0x104110A3 CYCLE ACTIVITY.CYCLES MEM ANY 340 124 115 21 1.7
0x144114A3 CYCLE ACTIVITY.STALLS MEM ANY 264 90 38 9 1.7
0x004102A6 EXE ACTIVITY.1 PORTS UTIL 82 7 69 12 1.7
0x004104A6 EXE ACTIVITY.2 PORTS UTIL 51 6 45 8 1.7
0x04412479 IDQ.ALL MITE CYCLES 4 UOPS 70 2 60 12 1.7
0x01413079 IDQ.MS CYCLES 98 3 88 16 1.7
0x00412079 IDQ.MS MITE UOPS 281 10 244 50 1.7
0x01453079 IDQ.MS SWITCHES 44 8 35 9 2.0
0x00413079 IDQ.MS UOPS 342 9 302 57 1.7
0x004101A1 UOPS DISPATCHED PORT.PORT 0 62 12 42 9 4.3
0x004102A1 UOPS DISPATCHED PORT.PORT 1 65 12 44 10 1.7
0x004120A1 UOPS DISPATCHED PORT.PORT 5 72 11 52 12 1.7
0x004140A1 UOPS DISPATCHED PORT.PORT 6 100 38 52 11 4.4
0x014101B1 UOPS EXECUTED.CYCLES GE 1 UOP EXEC 173 5 151 23 1.7
0x024101B1 UOPS EXECUTED.CYCLES GE 2 UOPS EXEC 83 4 75 12 1.7
0x004101B1 UOPS EXECUTED.THREAD 295 9 262 40 1.7

REPZ
SCASB

0x104110A3 CYCLE ACTIVITY.CYCLES MEM ANY 370 99 117 20 1.7
0x144114A3 CYCLE ACTIVITY.STALLS MEM ANY 259 108 38 9 1.7
0x004102A6 EXE ACTIVITY.1 PORTS UTIL 90 10 72 13 4.2
0x004104A6 EXE ACTIVITY.2 PORTS UTIL 55 5 47 8 1.7
0x01413079 IDQ.MS CYCLES 109 3 94 17 1.7
0x00412079 IDQ.MS MITE UOPS 279 8 234 47 1.7
0x01453079 IDQ.MS SWITCHES 38 10 30 9 1.7
0x00413079 IDQ.MS UOPS 340 7 292 54 1.7
0x0241019C IDQ UOPS NOT DELIVERED.CYCLES LE 2 UOP DELIV.CORE 53 19 50 19 4.4
0x004101A2 RESOURCE STALLS.ANY 426 134 43 34 2.1
0x004101A1 UOPS DISPATCHED PORT.PORT 0 71 17 43 9 1.7
0x004102A1 UOPS DISPATCHED PORT.PORT 1 71 13 43 11 1.7
0x004104A1 UOPS DISPATCHED PORT.PORT 2 25 2 22 4 1.7
0x004120A1 UOPS DISPATCHED PORT.PORT 5 85 16 51 10 1.7
0x004140A1 UOPS DISPATCHED PORT.PORT 6 99 29 54 12 1.7
0x014101B1 UOPS EXECUTED.CYCLES GE 1 UOP EXEC 184 9 151 23 4.3
0x024101B1 UOPS EXECUTED.CYCLES GE 2 UOPS EXEC 86 5 72 11 4.3
0x004101B1 UOPS EXECUTED.THREAD 303 14 253 37 4.4
0x0041010E UOPS ISSUED.ANY 324 4 294 46 1.7

with only an error rate of 0.1 % at level 2, 31.4 KB/s with an
error rate as 0.5 % at level (3). In addition, we also found that
many PMU events can be used to achieve Overtake attack by
using the PMU counter as a covert channel.

D. Exploitable PMU Events

We listed the PMU events in Intel i7-6700 that can be
exploited by CMPSB and SCASB to leak 1k random chars
with an error rate lower than 5 % via Overtake Meltdown in
Table II. And we got similar results on i7-7700. For this table,
match means that the test value is equal to the secret data, thus
the following cache block might be prefetched. Note that we
listed only a subset of the exploitable PMU events.

Although PMU generally requires a privileged state to read,
it can be used for potentially vulnerable analysis or attack a
security environment higher than a privileged state such as a
trusted execution environment (TEE).

E. Experiment Result Analysis
We verified the effectiveness of the two instructions we

found to achieve Meltdown-type attacks and can achieve a
throughput of up to 770.1KB/s with a very low error rate in
a specific victim data scenario.

From Table II, We can see that in different cases of whether
the test_value matches the secret data, There is a gap
between the mean (µ) of #PMC changes, but the standard
deviation (σ) is large., so more repeated are needed to reduce
noise. For our PMU experiment, we retry 1000 times for
each byte. Calculate the average value obtained from repeated
attempts as the change of the PMU count value tested under
each test value. Since the test value matches, more µOPs will
be performed in the microarchitecture, so we assume that if
matches the PMU change will be the largest.

Furthermore, via PMU analysis, we verify that the
REPE CMPSB could emit load uncached data behavior, which
depends on the secret value within transient execution, as



we could observe significantly different memory-related cycle
stall between match and unmatch.

VI. DISCUSSION AND COUNTERMEASURES

A. Discussion

We have shown that using REP CMPSB and REPZ SCASB
can be used to achieve a Meltdown-type attack with only
one or two instructions. This approach surpasses the speed of
the original Meltdown attack. Furthermore, our work changes
the previous implementation pattern of the Meltdown attack,
enabling all data-encoded instructions to only exist in the ex-
ecution stage, and eliminating the need for macro instructions
executed in the transient stage. This design change makes the
attack’s feature different from the original Meltdown [16], so
it could be more stealthy and harder to detect.

Our proposed attack is successfully demonstrated on CPUs
that are vulnerable to transient execution vulnerability. While
researchers have proposed KPTI as a mitigation measure for
these machines, recent studies indicate that Meltdown can still
be carried out even on systems where KPTI is deployed [7].
Also, since KPTI will bring performance loss, leading some
server operators will choose to disable it to make a trade-
off between security and performance. Even though newer
processors have addressed the Meltdown vulnerability at the
hardware design level, older vulnerable processors remain
widespread. And it will take time to replace all of them,
making continued research on Meltdown attacks essential. In
addition, our research can also bring insights to prevent similar
attacks that may occur in the future.

B. Countermeasures

1) Hardware: As the detail of the µarch implements for
instruction is not public, we are not able to generate a solution
on the hardware level. However, we can give some insights
for the hardware implementers: executing the micro-OPs with
more strict permission checks and stopping transient execution
of µarch early.

2) Software: Despite being challenged, deploying KPTI
remains the most effective mitigation for addressing the Over-
take Meltdown attacks. With KPTI, a significant portion of
the kernel memory is isolated from the user space, making
it extremely difficult for transient execution attacks to leak
the kernel data. As for the Overtake Zombieload vulnerability,
Intel has released microcode updates that offer mitigation. This
update introduces a side effect that clears the fill buffers and
store buffer, to the rarely used VERW instruction. Additionally,
operating systems could issue a dummy VERW instruction on
every context switch to prevent the potential data leak.

VII. CONCLUSION

Our research demonstrates that a Meltdown-type attack can
be accomplished with just a single macro instruction. As a
result, our work breaks the previous cognition and pattern to
the Meltdown attack, making them more stealthy and more
difficult to detect. The implications of this study underscore
the urgency for ongoing research in processor security, calling

for the development of robust defense mechanisms and the
design of security processors.

ACKNOWLEDGMENT

This work was supported in part by the NSFC General
Technology Fundamental Research Joint Fund (Grant No.
U1836215), National Natural Science Foundation of China
(Grant No. 62072263), the Fundamental Research Funds for
the Central Universities (Grant No. 2023RC71), Tsinghua
University Initiative Scientific Research Program, BUPT In-
novation and entrepreneurship support program (2023-YC-
A163), and Zhongguancun Laboratory.

REFERENCES

[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading Kernel Memory from User Space,” in Usenix
Security, 2018.

[2] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution,” in S&P, 2019.

[3] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution,” in Usenix Security, 2018.

[4] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, “Fallout: Leaking data on Meltdown-resistant CPUs,” in CCS,
2019.

[5] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue In-flight Data Load,”
in S&P. IEEE, 2019.

[6] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad : Cross-privilege-boundary data
sampling,” in CCS, 2019.

[7] Y. Cheng, Z. Zhang, Y. Gao, Z. Chen, S. Guo, Q. Zhang, R. Mei,
S. Nepal, and Y. Xiang, “Meltdown-type attacks are still feasible in the
wall of kernel page-table isolation,” Computers & Security, vol. 113, p.
102556, 2022.

[8] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation
of transient execution attacks and defenses,” in 28th USENIX Security
Symposium (USENIX Security 19), 2019.

[9] I. Corporation, “Intel® 64 and IA-32 Architectures Software Developer’s
Manual,” 2022.

[10] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth
Edition: A Quantitative Approach, 6th ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2017.

[11] P. Qiu, Q. Gao, C. Liu, D. Wang, Y. Lyu, X. Li, C. Wang, and G. Qu,
“Pmu-spill: A new side channel for transient execution attacks,” IEEE
Transactions on Circuits and Systems I: Regular Papers, pp. 1–12, 2023.

[12] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise,
l3 cache side-channel attack,” in 23rd {USENIX} Security Symposium
({USENIX} Security 14), 2014, pp. 719–732.

[13] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE symposium on security
and privacy. IEEE, 2015, pp. 605–622.

[14] A. Abel and J. Reineke, “uops.info: Characterizing latency, throughput,
and port usage of instructions on Intel microarchitectures,” in ASPLOS,
2019.

[15] O. Oleksenko, M. Guarnieri, B. Kopf, and M. Silberstein, “Hide and
seek with spectres: Efficient discovery of speculative information leaks
with random testing,” in 2023 IEEE Symposium on Security and Privacy
(SP). Los Alamitos, CA, USA: IEEE Computer Society, may 2023,
pp. 1737–1752.

[16] S. Mirbagher-Ajorpaz, G. Pokam, E. Mohammadian-Koruyeh, E. Garza,
N. Abu-Ghazaleh, and D. A. Jiménez, “Perspectron: Detecting invari-
ant footprints of microarchitectural attacks with perceptron,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020, pp. 1124–1137.


	Introduction
	Background
	Instruction Set Architecture and Microarchitecture
	Cache Side-Channel
	Transient Execution Vulnerabilities

	Overview of Overtake
	Inspiration
	Assumption and Threat Model
	Vulnerable Instructions
	Attack Steps

	Overtake Meltdown-type Attack Implement
	Attack Template
	Gadget of Overtake Meltdown
	Gadget of Overtake Zombieload

	Experiment and Evaluation
	Environment Setup and Test Coverage
	Experiment Stages
	Throughput and Error Rate
	Exploitable PMU Events
	Experiment Result Analysis

	Discussion and Countermeasures
	Discussion
	Countermeasures
	Hardware
	Software


	Conclusion
	References

