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Abstract
Microarchitectural side-channel attacks, which have become in-
creasingly prevalent, often rely on high-resolution timers. Emerging
processor architectures have sought to mitigate these vulnerabili-
ties by restricting access to fine-grained timers. In this work, we
verify the widespread existence of weak coherence in L1 cache on
multiple RISC chips, exploit it to bypass this type of mitigation and
propose GhostCache, which constructs timer-free and counter-free
instruction cache attacks. It introduces two novel and widely ap-
plied attack primitives, Modify+Recall and Call+ModifyCall, which
are applicable to both RISC-V and ARM architectures and affect 6
commercial and 3 open-source large RISC processors. To the best
of our knowledge, we present the first demonstration of timer-free
and counter-free cache attacks on RISC-V processors. We also iden-
tify undisclosed features, such as the next-three-line prefetching
mechanism and direct forwarding of evicted instructions from data
cache to instruction cache. Furthermore, we develop four types
of covert channels, achieving up to 1.68 MB/s with a 0.01% error
rate. For side-channel attacks, GhostCache enables three types of
timer-free real-world attacks. The first is an end-to-end website
fingerprinting attack, achieving 92.02% accuracy across 100 website
classes. The second is a set of kernel leakage attacks, including the
discovery of a new Spectre disclosure gadget via a function pointer
to leak arbitrary kernel data at 92.91% accuracy. We also launched
an attack to reconstruct cryptographic keys. Lastly, we propose
potential countermeasures to address these vulnerabilities in both
RISC-V and ARM architectures.
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1 Introduction
The cycle-level timer, also known as the high-resolution timer,
was originally designed for microbenchmarking and performance
optimization [12, 47, 75]. However, it also became a tool for at-
tackers to conduct side-channel attacks such as cache timing at-
tacks [52]. For more than a decade, modern processors have faced
increasing microarchitectural side-channel attacks and other vul-
nerabilities, with timers and counters playing a critical and foun-
dational role [21, 37, 44, 45, 56, 83]. Using these timing or other
hardware counters (e.g., performance monitor counter [66]), or
counters counted from a sibling thread [42] to build pseudo-timer,
attackers can extract sensitive information, such as cryptographic
keys, through techniques such as cache timing attacks [30, 83] and
power analysis [41].

Emerging processor architectures have increasingly focused on
limiting the accessibility of cycle-level high-resolution timer (HRT)
to mitigate timing-related information leaks, especially on recent
processors [28, 33, 42, 43, 50, 67, 68]. For instance, ARM introduces
the PMUSERENR_EL0 register [47], which allows the configuration of
access permissions for performance monitoring counters to reduce
the potential for attackers to exploit timing from the processor. Sim-
ilarly, the RISC-V has implemented mcyclecfg and mcounteren
registers [70], which enable fine-grained control over the privi-
lege modes for cycle and instruction-retirement counters (mcycle
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and instret) [18]. These HRT mitigation mechanisms are enabled by
default in ARM, Apple, and RISC-V chips, thus preventing unautho-
rized or unprivileged access from leading to potential leaks of timing
information.

To bypass the limitation of timers and counters, several timer-
free attacks have been proposed. However, most of the work targets
x86-64 and other platforms [17, 36, 79, 81], or specific features and
setup of ARM design [27, 77]. In this work, we focus on general
instruction cache (denoted as I$) 1 of multiple RISC processors to
come up with a timer-free and counter-free attack solution. 2

We propose GhostCache, a class of weak-coherence-based timer-
free I$ attacks on 9 RISC-based chips from different ISAs and differ-
ent vendors.We verify that GhostCache affects at least 6 commercial
ARM and RISC-V processors provided by ARM, Apple, and SiFive
(ARM Cortex-A53, ARM Cortex A76, Apple Silicon M1 and M4,
RISC-V SiFive U74 and P550), as well as 3 open-source large-scale
processors including Rocket-Chip [5], SonicBOOM [82], and Xiang-
shan [73].

To construct such attacks, in addition to the root problem that
HRT is crucial but increasingly restricted especially for I$ (C1), we
are also faced with the following challenges, where I$ traces (C2)
bring even more significant noise than D$, noise may come from
branch predictor, instruction prefetcher, also from a newly found
data forwarding mechanism from L1D$ to L1I$. Besides, I$ traces
(C3) are affected by side-effects of macro-op caches, and (C4) are
hard to exploit as Spectre primitives.

As shown in Figure 1, to tackle C1, we develop timer-free and
counter-free channels using the interaction between I$ and D$ and
derive the attack primitive. We first invoke a function to be cached
in L1I$ and then modify its code. Unless the corresponding cache
line is evicted, subsequent calls to the function will execute stale
instructions from L1I$. This observation results in an attack primi-
tive called Modify+Recall (S1). We also notice that Modify+Recall
is free from the L1D$ forward mechanism, thus it partially re-
solves C2. To tackle the remaining issues of C2, we create a new
primitive named Call+ModifyCall to exclude the influence of the
previously undisclosed next-three-line-prefetcher (S2.1), construct
a replacement-policy-orthogonal probing method to reduce probing
noise (S2.2), and develop a differential mechanism to filter noise
(S2.3). To address C3, we create a small-overhead misprediction for
macro-op cache to bypass its interference with the attack (S3). To
address C4, we use the call from the function pointer as the disclosure
gadget and verify its existence in a real Linux kernel (S4).

Through our exploration, we uncover several previously un-
known features in commercial processors. Specifically, we discover
a novel instruction prefetcher that prefetches the next three cache lines
of the current cache line (F1) in SiFive P550, which causes obfusca-
tion of the attacker’s observations. We further discover a forwarding
mechanism from L1D$ to L1I$ (F2) in ARM Cortex A76.

We use GhostCache to construct covert channels, in which we
show at least four different types of covert channels implemented
on ARM and RISC-V processors, including a covert channel that can
perform cross-privilege or cross-core attacks on the I$. We achieve

1Accordingly, we denote data cache as D$.
2Throughout our work, we use the term "timer-free" to refer to both the timer-free
and counter-free features.

a maximum bandwidth of more than 1.68 MB/s with 0.01% error
rate in the intra-thread covert channel.

We demonstrate the capabilities of GhostCache through three
case studies: 1) real-world end-to-end timer-free cache-based web-
site fingerprinting attacks, 2) cross-privilege kernel-leakage attacks
via secret-dependent control flow and instruction-based Spectre dis-
closure gadgets, 3) cross-context attack on cryptographic code that
leaks keys from RSA. Our website fingerprinting attack achieves up
to 92.02% accuracy (𝐹1 score of 91.90%) on 100 websites, surpassing
the latest timer-based cache attack [49], which has an 𝐹1 score of
89.3%. For Spectre attacks, we design a novel I$ disclosure gadget
using function pointers and identify a real gadget in the Linux
kernel. Using our gadget, we achieve kernel secret leakage with
90.840% accuracy.

Besides the attacks, we also propose potential countermeasures
in both RISC-V and ARM ISAs. Last but not least, we conduct
a systematic analysis and create a taxonomy of the cache state
observation methods in the related work section.

This paper makes several contributions, including that we:
• Propose GhostCache weak-coherence-based timer-free I$
attacks, which affect at least 6 commercial ARM and RISC-V
processors and 3 open-source large-scale RISC-V processors.
To the best of our knowledge, we have developed the first
timer-free L1I$ attacks in RISC-V.

• Uncover a novel instruction prefetcher that prefetches the
next three instruction lines on demand and a forwarding
mechanism from the D$ to the I$.

• Develop four types of covert channels that can, for example,
perform cross-privilege or cross-core attacks on the I$. Vari-
ants can achieve up to 1.68 MB/s bandwidth with a 0.01%
error rate.

• Design a timer-free cache-based website fingerprinting at-
tack that, to the best of our knowledge, achieves the highest
top-100 classification accuracy (92.02%) among timer-free
cache attacks, surpassing even the latest timer-based attack.

• Propose and demonstrates, to the best of our knowledge, the
first Spectre Unmask Instruction Cache (IC) gadget in the
Linux kernel.

Responsible Disclosure: We have disclosed our work and re-
sults to the affected vendors and received responses. ARM PSIRT
appreciated our disclosure and accepted the risk of GhostCache
on November 6, 2024. SiFive acknowledges the applicability of our
attack scenario and plans to disclose it via a security bulletin.

2 Background
2.1 Cache Side-Channel Attacks
Most cache side-channel attacks can be represented using a three-
step model [16]. Step 1 sets the cache line into a known state. Step
2 modifies the state of the cache line. Finally, based on the timing,
Step 3 observes the change in the state of the cache line. As an
example of a Prime+Probe [45, 52, 53] attack, first, the attacker fills
all the cache set by memory accesses, during the victim’s access,
the victim may evict different attacker’s cache lines depending on
the confidential data (e.g., the different secret values to index AES
T-table in AES key attack [52] using Prime+Probe), after that, the
attacker re-accesses the memory and measures the latency (which
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Figure 1: Overview of our research roadmap, including the challenges (C#), the solutions (S#), the findings (F#) and covert-
channel and case study applications.

reflects a cache miss or hit) to find out which cache line has been
evicted to infer the secret.

Most data-based cache side-channel attacks focus on data cache [53]
or unified cache [45] by exploiting the change of the cache state to
leak secrets. The instruction cache attacks [1, 2] are relatively less.
Researchers have proposed using timing differences in memory-
related operations as a method to attack software [3, 7, 9, 28, 53].
These timing-based side-channel attacks often target cryptographic
applications, where precise timing measurements can reveal sensi-
tive information. For example, software implementing AES encryp-
tion or decryption with table lookup is particularly vulnerable to
timing-based attacks [13]. By timing the memory access of specific
locations, an attacker can infer the values of the secret keys used.

More recently, timing-based channels have served as a fundamen-
tal building block for transient-execution attacks, such as Spectre
and Meltdown, which exploit speculative execution vulnerabilities
in modern processors. These attacks mostly leverage timing-based
channels to extract data that is otherwise protected by isolation
boundaries. Notable examples include Spectre [37], Meltdown [44],
NetSpectre [60], and various Spectre variants [39].

When the high-resolution timer is restricted, an attacker can
design a pseudo-timer using a loop counting from a sibling thread
(counter-thread) [42, 59], or amplify the cache latency for the coarse-
grained timer [34, 35, 72]. For a restricted threat model that targets
a trusted execution environment, the performance counter [21, 42]
can also be used to measure the cache state.

2.2 Instruction Cache in Microarchitecture
Modern microarchitecture is combined with three key components,
frontend, backend, and memory subsystem, as shown in Figure 2.
The instruction cache is commonly within the L1 cache of the
memory subsystem. Connecting between the L2 unified cache and
frontend to supply the instruction to be fetched, dispatched, and
executed in the backend, as we show in Figure 2.

The target address is predicted or obtained from the branch pre-
diction unit or the redirect path, and the instruction at that address
is obtained from the instruction cache. Above the L1 instruction
cache, there can be another instruction buffer named macro-op
cache, which stores the instructions decoded in the pipeline. When
the macro-op cache gets a cache hit, the execution stream can
avoid fetching data from the L1 instruction cache.

Beyond its basic function, cache often includes mechanisms such
as maintaining cache coherence. Unlike x86-64, for ARM and RISC-
V ISA, L1$ can be implemented in a weak-coherence-based manner,
meaning that hardware cache coherence is optional and may not

Backend
Execution Engine

L1 Instruction 
Cache (L1I$)

L1 Data
Cache (L1D$)

L2 Cache

read readwrite

readwrite

Frontend
Instruction Fetch

queue

strong coherence
x86-64 (Intel, AMD)

software maintained
weak coherence

   ARM: IC IVAU 
RISC-V: FENCE.I 

read

Prefetcher

Branch
Prediction

Unit

Figure 2: Key components of a modern RISC microarchitec-
ture, including the frontend, the backend, and the memory
Subsystem.

be enforced by hardware. For ARM chips with CTR_EL0.DIC == 0
or CTR_EL0.IDC == 0, barriers such as invalidation are needed to
ensure L1I$ and L1D$ coherence. In RISC-V, the FENCE.I instruc-
tion ensures that subsequent instructions fetched reflect previous
completed store instructions.

2.3 Self-Modifying Code
Self-modifying code (SMC) presents a notable exception, where
code actively alters its own instructions or executable memory dur-
ing execution. Common applications of SMC include bootloaders
and ELF loaders, debugging tools that dynamically modifies pro-
gram code, as seen with tools such as GNU Debugger, and other
just-in-time (JIT) techniques that generate native code at runtime
for dynamic optimizations.

3 Attack Primitives
In this section, we discuss four main challenges and their corre-
sponding solutions for building timer-free RISC-based instruction
cache attacks. We uncover and analyze new features of RISC ar-
chitectures that affect attacks. Based on the analysis, we introduce
the GhostCache attack, which contains two types of attack primi-
tives, Modify+Recall and Call+ModifyCall, to overcome difficulties
brought by the new features and enable real-world attacks.

3.1 Challenge: Restricted HRT
Challenge 1 (C1): High-resolution timers are crucial yet

increasingly restricted for instruction cache attacks.
Instruction cache (I$) attacks usually require accurate timers

more compared to data cache (D$) attacks. I$ accesses are tightly
coupled with speculative execution and branch prediction, which
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produce transient and small timing variations that are harder to
measure [37]. Furthermore, the optimized and predictable nature of
I$ operations, combined with pipeline-level integration, reduces ob-
servable timing discrepancies, necessitating high-resolution timers
to distinguish cache activity accurately [14, 26] .

Both L1I$ and L1D$ require a high-resolution timer for accurately
priming and probing. On P550, using rdtime instruction instead
of rdcycle will result in an error rate of 46.875% when trying to
perform Prime+Probe in L1I$. Using rdtime, timing differences of
L1 hits and misses range from 0 to 2 ticks, and most of the L1 misses
will get 0 latency difference (72.2% of 1000 measurements). This
indicates that its granularity is insufficient to distinguish between
L1 hits and misses.

A common defense against side-channel attacks is limiting high-
resolution timers. AMD restricts timer resolution onmanyCPUs [43],
while ARM makes hardware timers privileged [42]. RISC-V intro-
duces mcounteren to restrict timer access [18]. Counter-based alter-
natives, relying on sibling threads, face challenges like scheduling
issues and Dynamic Voltage Frequency Scaling (DVFS), making
them less accurate and noisier than native timers.

Solution 1 (S1): Create timer-free attack channels using
coherence between I$ and D$.

All timer-free methods have the same characteristics, that is, to
convert a microarchitecture activity, such as a cache miss/invalid,
a memory store (even transient), or some instruction’s effect, to
an architecturally visible state. Based on the above principle, we
conduct an extensive analysis and evaluate in different ISAs and
different implementations, shown in Table 1, to find whether there
exists an opportunity to create a window that can reflect the status
of themicroarchitecture. Using operation steps shown in Equation 1,
we notice that we can create an incoherent state and observe the
cache behavior of the state. As cross-core coherence and MESI
protocol (invalidate-based cache coherence protocol) have already
been well researched, we focus on the coherence implementation
between L1I$ and L1D$.

We design a benchmark using self-modifying code (SMC) to
evaluate L1I$ and L1D$ coherence across ISAs. The benchmark
modifies executable memory after an initial call and recalls it to
observe if the modified instruction executes. Using this, we evaluate
across x86-64 (Intel and AMD), ARM, and RISC-V chips, confirming
weak L1 cache coherence in tested ARM chips [47]. We further
reverse-engineer that both the commercial and open-source RISC-V
also choose to implement weak L1 cache coherence. 3

𝐶𝑎𝑙𝑙 ⇒ 𝑀𝑜𝑑𝑖 𝑓 𝑦 ⇒ 𝑅𝑒𝑐𝑎𝑙𝑙 (1)

To exploit this incoherence, we notice that if the stale cache line
in L1I$ is evicted, the modified instruction data (new value) will
be fetched from L1D$ or L2$ and used to execute, even without an
invalidation or serializing instruction. Based on this behavior, we
can do direct stale/new cache line reads to leak whether there was
victim executions mapping to the same set and doing eviction, with-
out using timers. This attack primitive, we name it Modify+Recall
(M+R), can be formulated as:

3Although our benchmark does not create incoherence on the x86-64’s L1 cache, the
prefetch queue, as being documented, may still be able to do that. We leave this for
future work.

Table 1: Tested environment and systematic evaluation re-
sults for Modify+Recall (M+R). W-co. means the weak co-
herence in the L1$. The ARM Cortex-A53 runs Debian
GNU/Linux 11 (bullseye), and the ARM Cortex A76 runs
Ubuntu 24.04.1 LTS. M1 Max runs macOS 15.1 (24B83). 4 The
SiFive P550 runs Debian GNU/Linux.

CPU Linux Kernel W-co. L1I$ Sync

Intel Xeon 6438Y+ 5.15.0-130-generic % (Hardware)
AMD EPYC 9554 5.4.0-196-generic % (Hardware)
ARM Cortex A53 5.10.110-1-rockchip ! IC IVAU
ARM Cortex A76 6.8.0-1013-raspi ! IC IVAU
Apple M1 6.10.11-linuxkit ! IC IVAU
Apple M4 6.8.0-47-generic ! IC IVAU
SiFive U74 6.6.20-starfive ! FENCE.I
SiFive P550 6.6.18-eic7x ! FENCE.I
Rocket Chip & BOOM N/A ! FENCE.I
Xiangshan N/A ! FENCE.I

Attack Primitive 1 (Modify+Recall)
𝐶𝑎𝑙𝑙 ⇒ 𝑀𝑜𝑑𝑖 𝑓 𝑦 ⇒ 𝑉𝑖𝑐𝑡𝑖𝑚 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 ⇒ 𝑅𝑒𝑐𝑎𝑙𝑙

(2)

We have formulated the Modify+Recall attack primitive for
monitoring L1I$ activity in a timer-free manner. Given a mem-
ory page func, whose memory protection bits are set as PROT_READ
| PROT_WRITE | PROT_EXEC via mprotect or mmap system call,
the initial primitive consists of the following steps (demonstrated
in Figure 3):

• Step 1: Invoke the func to ensure that it is cached in L1I$.
• Step 2: Modify the func via a store instruction and write
different instructions that have different behavior, e.g., re-
turning a different register value.With that, L1D$ is modified
and incoherent with instructions in L1I$.

• Step 3: Invoke the sched_yield system call to yield the
CPU to the victim, or just call the victim’s function (e.g.,
vulnerable kernel system call).

• Step 4: Recall (invoke) the func and observe the execution
results to infer whether the stale instruction in L1I$ has been
evicted by victim’s function.

To observe the victim’s eviction in step 4, the attacker prepares
at least four set-aligned func to fully evict a 4-way L1I$ cache set.

Fetch from D$ to I$. Furthermore, we observe that even when the
L1I$ set is confirmed to be evicted using Modify+Recall, it does not
exhibit a larger or distinguishable memory access latency, making
the eviction unobservable. Specifically, without invalidating the in-
struction in L1D$, the function call with L1I$ hit and miss (evicted)
incurs the same latency of 92 cycles (measured via PMCCNTR_EL0).
However, with invalidation, the cycle counts are 92 for hits and
approximately 118 to 128 cycles for misses. This suggests that in-
struction fetch operations prioritize L1I$ but also perform a lookup
in L1D$ when necessary. If a cache line in L1I$ is evicted, it is likely

4As macOS has limited the use of SMC, for convenience, the experiment has been con-
ducted in its Docker environment with Linux 6.10.11-linuxkit in Apple Virtualization
framework.
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Figure 3: Overview of Modify+Recall.

retrieved and forwarded from the L1D$ block. This is demonstrated
in Cortex-A76. The key point of GhostCache is that the stale value
in L1I$ is evicted or invalidated. The forward mechanism will not
affect the stale value, but it will make it faster to retrieve modified
instruction data from L1D$ rather than L2$ during recall for an
evicted instruction cache line.

Finding 1: If a cache line in L1I$ is evicted, it is likely fetched
and supplied from the corresponding block in L1D$.

3.2 Challenge: Unavoidable I-Cache Noise
Challenge 2 (C2): Unavoidable instruction cache traces

create significant noise.
Although we do not exploit timer, cache eviction pollutions can

generate noise to impede high-resolution attacks. Furthermore,
potential instruction cache prefetchers will bring more cache pollu-
tion.

Uncover Next-three-line Prefetcher using Modify+Recall. In at-
tempting to perform a full-set eviction on the P550 processor, as
we show in Figure 4, a cache miss triggers prefetching and loads
the requested line into the cache while evicting a stale one from
the Modify phase. Timing measurements confirm that all three
prefetched consecutive cache lines are L1 hits. This behavior sug-
gests the presence of an instruction prefetcher that preemptively
fetches the next 3 cache lines. We speculate that this undocumented
feature is designed to optimize sequential instruction access by an-
ticipating upcoming lines and loading them into the cache ahead
of time. From the evaluation result, we also notice that it does not
perform cross-page prefetch, as indicated by the arrow in Figure 4.
When the missed cache line is adjacent to the page boundary, the
subsequent cache line on the next page will not be prefetched to
cause eviction.

Prefetcher obfuscation to the attacks. A prefetcher that fetches
lines across multiple sets at once can introduce complex interactions
between cache management and prefetching, potentially impact-
ing the effectiveness of cache-based side-channel attacks. As shown
in Figure 5, when conducting a cache attack on P550, if 4 consec-
utive set evictions are observed, it can be determined that there
is 1 instruction fetched with 3 cache line prefetched, while the 3
prefetched lines may hide later access to these address since exe-
cuting to prefetched lines will not trigger prefetching. This means,
witnessing 4 consecutive set evictions maps to 23 = 8 types of
victim’s instruction execution patterns. Moreover, the inability to

distinguish certain instruction executions increases as the number
of sequential evicted traces exceeds 6. Specifically, when 𝑛 con-
secutive evictions are observed with 6 ≤ 𝑛 ≤ 8, there are 2𝑛−2
indistinguishable victim access patterns, making it unclear whether
they result from prefetching or actual accesses. This phenomenon
also accounts for the lower classification accuracy of website fin-
gerprinting attack on the P550, as discussed in Section 5, compared
to the Cortex A76.

Finding 2:We identify a next-three-line prefetcher, which prefetches
the next three cache lines of the current cache line and maps them
to the subsequent three cache sets.

Solution 2.1 (S2.1): Generate new attack primitive to avoid
prefetching side effects.

Tomitigate the obfuscation caused by the next-three-line prefetcher,
we analyze the interaction between prefetching and our Mod-
ify+Recall primitive. We speculate that prefetcher is triggered only
when the stale data held in L1I$ is evicted. This mechanism pri-
oritizes filling potentially useful entries without evicting valid in-
structions. To avoid triggering prefetching, we re-design the op-
erations to make sure that the “stale” state is not demonstrated
before the victim’s execution and introduce a new attack primitive,
Call+ModifyCall:

Attack Primitive 2 (Call+ModifyCall)
𝐶𝑎𝑙𝑙 ⇒ 𝑉𝑖𝑐𝑡𝑖𝑚 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 ⇒ 𝑀𝑜𝑑𝑖 𝑓 𝑦 ⇒ 𝑅𝑒𝑐𝑎𝑙𝑙

(3)

The new attack primitive Call+ModifyCall (C+MC) is shown
in Figure 7 and consists of the following steps:

• Step 1: Call the func to ensure that it is cached in L1I$.
• Step 2: Invoke the sched_yield system call to yield the
CPU to the victim. Notice that different from Modify+Recall,
there is no stale L1I$ at this step.

• Step 3: Modify and Call the func to detect whether there
is still a cache line copy within the L1I$.

In 10 tests, the L1I$ eviction of Modify+Recall consistently acti-
vates the next-three-line prefetcher (100%), while Call+ModifyCall
did not (0%), likely due to differences in stale data states.

Case Study Effect Highlight: Website Fingerprinting Attack. Using
Modify+Recall, the website fingerprinting attack can achieve high
accuracy (>90%) in Cortex A76. While in P550, because of the effect
of next-three-line prefetcher, the accuracy is relatively low. When
using the improved Call+ModifyCall, as is demonstrated in Figure 6,
the noise caused by the next-three-line prefetcher is eliminated,
and the final accuracy is much higher in P550.

Solution 2.2 (S2.2): Construct replacement-policy-orthogonal
probing method.

Cache side-channel attacks are also shown to suffer from noises
induced by set thrashing [42] to accurately do priming and probing
related operations. Different replacement policies such as pesudo-
LRU and random replacement policies will require customized at-
tack access pattern and need to overcome indeterminism [42]. In
this case, we discover the advantages of our GhostCache attack
primitives to accurately control and access arbitrary way and set
combination of the L1I$.

Our reverse engineering strategy is similar to previous work [77].
We occupy all the ways of an instruction cache set via function



CCS ’25, October 13–17, 2025, Taipei Yu Jin et al.

page boundary page boundary

Figure 4: Observation of Cache line eviction across different cache sets in SiFive P550. The deep blue dots represent observed
evictions in the corresponding cache sets. Additionally, the next three cache lines, mapped to the subsequent three cache sets
(highlighted in light blue), are also observed to be prefetched, evicting the stale lines. This behavior suggests the presence of a
next-three-line prefetcher. As shown in the top-right of the second and last sub-figures, this prefetcher does not operate across
page boundaries.
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Figure 5: Different scenarios when several consecutive cache
lines are observed as evicted. A single cache access triggers
the prefetching of the next three lines and evicts original
stale lines. When multiple cache lines are evicted, it may
reflect additional victim execution scenarios, making it chal-
lenging to deduce the exact cache set access sequence from
the eviction trace.
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Figure 6: The instruction trace of website fingerprinting in
P550. Left uses Modify+Recall; right uses Call+ModifyCall.

calls and record the order of the calls, then traverse an eviction
set and observe which cache line is evicted, thus inferring the
replacement policy. As illustrated in Figure 8, we sequentially
fill each way of L1I$ set 0 with stale instructions and L1D$ set 0
with modified instructions during Modify step.5 Subsequently, we
execute three instructions that map to set 0. Our findings reveal
that the stale instructions in the first three ways are evicted, with
the execution results corresponding to the modified instructions.

5According to ARM’s documentation [48], the Cortex-A76 features a 4-way set-
associative L1I$.

This behavior is consistently observed for evictions across 1 to 4
ways. Using it, we reverse-engineered that the replacement policy
in P550 employs an LRU-like policy. We further confirm that the
replacement policy in the L1 instruction cache (L1I$) of the ARM
Cortex-A76 is pseudo-LRU as documented. While we mention
stale cache in the previous section, we do not observe differences
of replacement policy behavior related to cache staleness.

Upon identifying that the replacement policy is pseudo-LRU,
we can reverse the recall order, in which the last func that was
called before modify will be the first to be recalled, thus reducing
the additional eviction of residual stale cache lines during probe
(reducing pollution by 50.3% under single cache line eviction). Also,
compared with timer-based iPrime+iProbe, our approach does not
need to invalidate the corresponding D$ block.

Solution 2.3 (S2.3): Design a noise canceler utilizing differ-
ential analysis.

To achieve a cache attack, the attacker can use sched_yield to
give the timeslice to the victim, or a system call to execute the secret-
dependent control-flow gadget or trigger speculation gadgets in
kernel. The sched_yield and system call have inherent side effects
that will evict the L1I$ and cause eviction noise. To solve this issue,
we run the differential analysis, designing the attack to run twice,
with the first run without victim execution or not triggering a
vulnerable gadget to collect the background noise. After the second
run, we calculate the differential result to even out the noise, and
finally get the execution side effects caused by the secret.

Case Study Effect Highlight: Kernel Leakage Attack. We also apply
this differential method for kernel leakage attacks. Without it,
secret-dependent control flow is hard to distinguish because of too
many irrelevant evictions. With eviction traces of known data as
background noise, secret trace’s additional evictions become clearer,
as shown in the example in Figure 9. Here, the background noise is
collected independently of victim website fetches, allowing noise
from sched_yield system calls to be effectively filtered.

3.3 Challenge: Side-effects of Macro-op Cache
Challenge 3 (C3): Interference due to the side-effects of

ARM’s macro-op cache.
When we conduct an attack using Call+ModifyCall, we notice

that after the modification in Cortex A76, without manual ic ivau,
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Figure 7: Monitor the eviction of L1I$ using Call+ModifyCall.
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Figure 9: Website fingerprinting traces from google.com in
Cortex A76. Left: raw cache eviction result; Right: differential
analysis result. Lighter colors means more L1I$ evictions.

even if the L1I$ is evicted, our execution result is still from the stale
instruction which reduces the attack effects.

Even though the stale value in L1I$ is evicted (causing L1I$ miss),
the executed instruction is still the stale one, which indicates that
there is an L0 macro-op cache storing the stale instruction. ARM’s
manual [48] also supports this.

Solution 3 (S3): Induce a small-overhead misprediction for
macro-op cache to bypass its interference.

Building on prior research on L0 cache behavior [14, 57], we
address this challenge by inducing a misprediction before recalling
the modified instruction. Adding a for loop with an unexpected
break appears to bypass the macro-op cache in Cortex A76. Reverse-
engineering with PMCCNTR_EL0 confirms this. Without mispredic-
tion before the execution, cycle difference between L1I$ hit (13-35
cycles) and miss (22-30 cycles) is small. With misprediction, the
cycle difference between L1I$ hit (14-40 cycles) and miss (42-59
cycles) arises, which suggests that the macro-op cache is probably
bypassed and eviction takes effect in L1I$.

3.4 Challenge: I-Cache Trace for Spectre
Challenge 4 (C4): Instruction cache traces are rarely ex-

ploited as Spectre primitives.
Previous work [32] has revealed Spectre disclosure gadgets,

which can rely on branch misprediction to be speculatively ex-
ecuted and finally leak the secret of the victim via a covert channel.
There are two types of disclosure gadgets [32], masked and un-
masked gadgets. They can be further classified as Instruction-signal
gadgets (IC gadgets) and Data Cache-signal gadgets (DC gadgets).
Existing works [71] have only exploited the masked and unmasked
DC gadgets. Besides, finding the real Spectre gadget is also chal-
lenging.

Solution 4 (S4): Use the function pointer call as the disclo-
sure gadget.

To transmit the secret via L1I$, intuitively, a secret-dependent
function call is needed (IC gadget). We design several gadget pat-
terns and finally propose a real existing kernel gadget using the
function pointer.� �
1 // masked DC gadget , use by Spectre V1
2 void masked_gadget(long *secret)
3 { array [(* secret & 0xff) * 4096]; }
4 // unmasked DC gadget , can by Spectre V2
5 void unmasked_dc_gadget(long ** secret)
6 { ** secret; }
7 // This work: unmasked IC gadget
8 void unmasked_ic_gadget(long ** secret) {
9 (* secret)(); } // ldr x0, [sp, #4]; blr x0;� �

Listing 1: Transient leakage gadget, we find real-world
unmasked IC gadgets.

Case Study Effect Highlight: Instruction-As-Disclosure-Gadget Spec-
tre Attack. Here we conduct a review of the source code of the
Linux kernel and discover that the unmasked IC gadget, formed
as (*secret)(), exists in the Linux kernel and can be exploited.
The posix_lock_inode of fs/locks.c has an IC gadget gadget:
(*func)();. This type of gadget will load secret data from *secret,
and then use the secret value to conduct an indirect branch jump.
We demonstrate different types of Spectre gadgets and the corre-
sponding ARM assembly instructions after our (*secret)() gad-
get at Listing 1.

4 Building Timer-Free Covert Channel
In this section, we show how we exploit the GhostCache primitive
to construct four distinct covert channels, as shown in Figure 10,
leading to the final real-world attack in section 5 and section 6.
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Figure 10: Overview of GhostCache’s Covert Channel.

4.1 Intra-Thread Covert Channel
In an intra-thread covert channel, we confirm that data access does
not affect the contents of the L1I$. This stability allows informa-
tion to be communicated within a single thread by controlling and
observing the L1I$ state. In this case, we also do not have the inter-
ference typically caused by data cache interactions, thus we have
less noise. As a proof-of-concept covert channel, we demonstrate
its widespread presence across ARM and RISC-V chips, verified on
at least six commercial processors from various vendors and ISAs,
as detailed in Table 1.

4.2 Inter-Thread/Process Covert Channel
In an inter-thread/process covert channel, we exploit the fact that
context switching between threads and processes does not flush the en-
tire L1I$, allowing the cache state to persist across context switches.
This persistence makes it possible to establish a covert communica-
tion channel between threads by modulating and detecting changes
in specific L1I$ lines, even when threads are isolated from each
other in terms of data. This covert channel leads to our cache-based
website fingerprinting attacks in section 5.

4.3 Cross-Boundary Covert Channel
We observe that different system calls lead to evictions in different
sets within the L1I$. This behavior indicates that the state of the
L1I$ can persist through privilege mode transitions, such as those
between user mode and kernel mode. Using this channel, a kernel-
mode spy process can signal information to a user-mode attacker
by selectively evicting cache sets based on system calls, creating
a bridge across privilege boundaries. This covert channel leads to
kernel control flow leakage attacks in section 6.

4.4 Cross-Core Covert Channel with
Synchronization: Modify+(Invalid)+Recall

We review and explore ARM’s cache management instructions.
Through experiments, we find that although not explicitly stated
in the manual [47, 48], the IC IVAU instruction can invalidate L1I$
lines even cross-core, as is shown in Figure 10. Arm’s documenta-
tion [48] states IC IVAU is a user-level instruction that invalidates
I$ via the point of unification (PoU). Tests show Arm A76 supports
cross-core invalidation, while RISC-V P550 does not, but on A76,
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Figure 11: Cross-core timer-free sync covert channel in ARM,
including a synchronization channel $ set (left) and an in-
formation channel $ set (right). The right cache set is used
to transmit the secret, and the left one is used to mark the
ready state of this round of transmission.

the invalidation effects stay within a process and do not cross se-
curity boundaries. By leveraging this instruction, we can create a
cross-core covert channel, allowing processes on different cores to
communicate covertly by controlling and observing specific cache
blocks across cores.

Cross-core synchronization. Without the timer, it is more
challenging to synchronize across different cores for stable trans-
mission. In this case, we carefully design a mechanism to create a
cross-core synchronization covert channel of GhostCache attack
without relying on a timer (as shown in Figure 11):

• Step 1: Prepare two L1I$ cache lines in different cache sets
that have stale instruction. The receiver waits the spy on
another core to invalidate the left set.

• Step 2: Once the spy sends a covert bit by invalidating the
right cache set, the spy invalidates the left cache set to notify
the receiver that the covert channel is ready to receive.

• Step 3: Once the receiver recalls and finds that the left L1I$
cache set holds new instruction, it means the covert data is
ready and the receiver recalls the right cache set to infer the
secret information.

• Step 4: Receiver sends “ready” and go back to step 1 for the
following round.

For RISC-V multi-core chips, the FENCE.I instruction does not
guarantee that other RISC-V harts 6 observe the local hart’s stores
during their instruction fetches, which means that it is hard to
utilize our two-bit synchronization scheme. However, we notice
that a ratified but unimplemented RISC-V “CMO” extensions [63]
introduce the following three instructions: cbo.clean, cbo.flush,
and cbo.inval. These instructions can enable GhostCache’s RISC-
V cross-core channel.

Finding 3 : ARM’s invalidation instructions can invalidate the
L1I cache across cores, facilitating attack construction.

4.5 Evaluation of Covert Channels
We evaluate the bandwidth and error rate of the above covert chan-
nels (result shown in Table 2). In addition to the Cortex-A76, we
also evaluate the intra-thread GhostCache channel on Apple M4

6Harts in RISC-V refer to hardware threads [70], or an execution environment within
a logical core.
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Table 2: Covert channel evaluation using GhostCache on
ARM Cortex A76, including bandwidth and error rates (ERs).

Channel Model Scenario Bandwidth ERs

Intra-Thread (I$ PP) PoC 837.6 kB/s 1.90%
Intra-Thread (D$ PP) PoC 730.8 kB/s 4.00%
Inter-Thread/Process (D$ PP) Context Switch 3.08 kB/s 0.6%
Cross-Boundary (D$ PP) User-Kernel 41.7 kB/s 0.3%
Intra-Thread (M+R) PoC 1685.7 kB/s 0.01%
Inter-Thread/Process Context Switch 1280.2 B/s 1.30%
Cross-Boundary User-Kernel 31.6 kB/s 0.00%
Cross-Core (Sync) Spy’s IC IVAU 11.2kB/s 0.00%

and SiFive P550, achieving 104.242 kB/s with a 0.004% error rate
and 1013.407 kB/s with 0% error, respectively.

Comparison with Prime+Probe. In covert-channel scenarios, we
can systematically analyze finer-grained timing and spatial charac-
teristics, measuring bandwidth and error rates to define the upper
granularity limit of corresponding side channels. We implemented a
similar 1-bit covert channel using state-of-the-art Prime+Probe [58]
on L1I$ and L1D$, named iPrime+iProbe and dPrime+dProbe, re-
spectively. We evaluate three types of timers in ARM chips, includ-
ing POSIX function clock_gettime, CNTVCT_EL0 that are com-
monly readable for user programs at EL0, and PMCCNTR_EL0 that re-
quires to be enabled from kernel space. In our experiment, at Cortex-
A76, the CNTVCT_EL0’s resolution is not enough to detect whether
the L1 instruction cache set is evicted. The clock_gettime and
PMCCNTR_EL0 have enough resolution, while the former is prone
to noise [77] and has limited resolution in the operating system as
it relies on the system call, and the userspace (EL0) access to later
needs to be enabled in privilege mode.

In Prime+Probe covert channels, sender and receiver use an L1
eviction set and timer-based latency to detect cache evictions, with
thresholds pre-profiled using an HRT. The experiment result of
iPrime+iProbe and dPrime+dProbe to transfer 64K random bytes
has been shown in Table 2. For dPrime+dProbe, the channel speed
is mainly affected by the barrier instruction (e.g. ISB; DSB).

As shown in Table 2, GhostCache achieves approximately twice
the speed of comparable intra-thread covert channel attacks. Ghost-
Cache outperforms iPrime+iProbe on A76. In A76, GhostCache
can also achieve 18.1% higher bandwidth in boundary-crossing and
almost quadruple the bandwidth in context-switching compared
with Prime+Probe. This advantage arises because iPrime+iProbe
requires handling duplicate cache line copies in D$ and I$ due to
our newly discovered forwarding mechanism (F2). Therefore, af-
ter the prime, DC CIVA instructions are needed to invalidate all
D$ copies in order to enable observable timing differences from
I$ interference caused by the victim. In contrast, GhostCache by-
passes this extra invalidation step, resulting in improved efficiency.
For dPrime+dProbe, barrier instructions such as ISB and DSB are
needed to reveal the latency of different memory data accesses,
while GhostCache does not rely on the timer, thus we get rid of
barrier instructions and are faster.

Table 3: Evaluation of our timer-free cache-based website fin-
gerprinting attacks. Call+ModifyCall can achieve distinctly
higher accuracy in P550 than Modify+Recall since it elimi-
nates noise from our discovered prefetcher (F1).

Primitive Platform #Class Accuracy Precision Recall

M+R

A76 (ARM) 15 97.98% 98.03% 97.98%
A76 (ARM) 100 92.02% 91.98% 92.00%
P550 (RISC-V) 15 95.06% 95.22% 95.07%
P550 (RISC-V) 100 87.60% 87.71% 87.63%

C+MC P550 (RISC-V) 15 97.50% 97.53% 97.52%
P550 (RISC-V) 100 90.05% 90.23% 90.07%

5 Case study 1: Timer-Free Cache-based
Website Fingerprinting Attack

In this section, we construct an end-to-end cache-based website
fingerprinting attack utilizing the GhostCache.

5.1 Threat Model
We follow previous work [79]’s threat model, considering an unpriv-
ileged attacker without access to architectural timing primitives.
Additionally, the attacker is assumed to have the ability to set the
processor core affinity of its threads, which does not require ele-
vated privileges on Linux and even Windows.

5.2 Attack Implementation: Spying L1I$
The form of website fingerprinting [61, 62] poses significant privacy
risks, particularly in scenarios requiring strong user anonymity.
Web browsing generates distinctive cache access patterns influ-
enced by factors such as network request, content structure, page
layout, and script execution.
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Figure 12: Processed L1I$ eviction patterns on the Cortex-
A76.

In this case study, by observing the state of the L1I$, an attacker
can use GhostCache to construct fingerprints corresponding to
specific websites visited by a user. The attacker gathers L1I$ evic-
tion sequence patterns, which can be classified to identify specific
websites. This approach enables the inference of browsing behavior
or the identification of the victim’s visited website without relying
on conventional timing-based techniques.

In our real-world attack, the attacker binds its thread to the same
CPU core as the victim’s browser and performs GhostCache. The
attack involves alternating between monitoring L1I$ evictions and
deliberate busy-waiting, using one or more calls to sched_yield to
relinquish the time slice to the victim. By tracking the number and
location of evicted cache sets across these iterations, the attacker
constructs a sequence of eviction sets without relying on a timer.
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Figure 13: Confusion matrixs using GhostCache for the top-
15 website classification on ARM (Left) and RISC-V (Right).

Although this sequence does not follow fixed-time intervals or
directly map to real-time events, further analysis demonstrates its
ability to effectively capture cache activity patterns, enabling highly
accurate inference of the victim’s browser behavior.

5.3 Website Classification and Investigation
For the visited websites, we follow established practices [79], select-
ing the 100 most-visited websites from the Alexa Top list. For each
website, 100 traces are collected. The dataset is split into training
and testing sets (4:1 ratio). Training involves repeated splits: 15-class
classification is conducted 100 times, and 100-class classification 10
times. Final accuracy is averaged across iterations.

We observed that invoking sched_yield evicts a fixed set of
cache sets, regardless of the victim program’s state, as shown in Fig-
ure 9 and Figure 6. However, when the victim accesses the L1I
cache, evictions span nearly all sets. Thus, we focus on counting
total evicted sets, ignoring specific patterns. For classification, we
used TimeSeriesForestClassifier from sktime [46], which seg-
ments time series into intervals and extracts features like mean,
standard deviation, and slope, as shown in Figure 12. These features
train a Random Forest classifier with n_estimators=500.

5.4 Experimental Setup and Evaluation
The experiments were conducted using the Chromium browser [54],
which is an open-source browser, as the official Chrome browser
does not support RISC-V architectures yet. We perform evalua-
tions on two platforms: ARM-based Raspberry Pi 5 (Cortex A76)
and a RISC-V development board (P550). On the P550, the browser
(Chromium 125.0.6422.112) is operated in headless mode (render-
ing and generating screenshots without a physical display), while
on the Raspberry Pi, the browser (Chromium 131.0.6778.139 snap)
runs with a standard display setup with a real physical monitor. We
summarize and show the classification evaluation results in Table 3
and Figure 13. Using GhostCache, we achieve high-accuracy web-
site classification across ARM and RISC-V architectures, with ARM
reaching a top-100 classification accuracy of 92%. Furthermore, our
results demonstrate that I$ traces from different websites remain
highly distinguishable. Even as the number of websites increases
from 15 to 100, the classification accuracy exhibits minimal decline.

Regarding the degradation of classification accuracy under ir-
relevant operations, we simulate noise by playing online videos in

another browser, using a simple setting of 15 website classifications.
As a result, we find that it causes cache pollution that lowers clas-
sification accuracy from 98.03% to 94.4% on A76. Cache pollution
also affects the accuracy of timing-based attacks, while a naive
timing-based iPrime+iProbe attack under the same settings on A76
only results in 55% accuracy.

6 Case Study 2: Timer-Free Kernel leakage
Attack

In this section, we show how we use GhostCache to attack the
secret-dependent control flow and the IC gadget, bypassing the
user-kernel boundary.

6.1 Threat Model
The attacker aims to track the execution of a specific control flow or
conditional function call within a victim process or kernel context
to extract sensitive data or enable further exploits.

For Control Flow Leakage.We assume that the attacker and the
victim are on the same logical core, the same as standard user-kernel
leakage model [10, 76], thus sharing the L1I$. Only user-level access
and system call capabilities are required—no superuser privileges
or direct communication.

For Spectre Attack. This work adopts the user-to-kernel Spectre
threat model [37, 71, 79], where an adversary controls an unprivi-
leged user process to leak kernel data. High-resolution timers are
assumed disabled as a mitigation, and alternative timer methods are
considered too noisy or limited for effective use. Following prior
work [37, 79], the presence of an exploitable instruction gadget in
the kernel is assumed or discovered by the attacker.

6.2 Leak Kernel Control-Flow
Kernel control-flow leakage serves as the first step on the road to
conduct a user-kernel Spectre attack, which shows that we can do
cross-boundary leakage. The next step is to obtain a secret using
the Spectre gadget and transmit it via control flow, which we will
introduce later.

Following the methodology of prior work [10], we implement a
custom kernel function embedded within a user-accessible system
call, incorporating a switch statement as shown in Listing 2. This
function contains 16 unique switch cases, each determined by a
secret value and invoking a function aligned with a distinct cache
set. The attacker utilizes this system call and employs GhostCache
to infer the secret value by monitoring cache eviction patterns. Our
evaluation is conducted on a Cortex-A76 device running Ubuntu
24.04.1 LTS (6.8.0-1013-raspi). Across 4096 iterations, the victim
function updates the secret value randomly after each system call.
Using GhostCache, the attacker identifies the evicted cache set to
deduce the secret value, achieving a leakage accuracy of 96.729%.� �
1 void vulnerable_syscall(void* param) {
2 int value = get_secret_state ();
3 switch (value) {
4 case STATE_ONE: do_something (); break;
5 case STATE_TWO: do_other (); break;
6 default: do_another (); } }� �

Listing 2: The customized kernel function leaking control
flow using GhostCache.
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6.3 Use Function Pointers as Spectre Gadgets
Next, we examine Spectre attacks. Within the cache domain, there
are two types of Spectre disclosure gadgets [71]: Instruction Cache-
signal gadgets (IC gadgets) and Data Cache-signal gadgets (DC
gadgets). An IC gadget involves two dependent memory opera-
tions: the first retrieves the secret, and the second executes secret-
dependent control flow, transmitting the secret to L1I$. Examples of
IC gadgets are shown in Listing 3. The first, an unmask gadget from
posix_test_lock (a real Linux Kernel case), is (*func)(). The sec-
ond, a mask gadget, demonstrates a common proof-of-concept. The
transient execution window (several-hundred-cycle cache misses)
allows sub-speculative execution (around 10 cycles) to resteer from
BTB entries to secret-encoded function calls [65].� �
1 void posix_test_lock (...) { // fs/locks.c
2 ... (*func)(); ... }
3 void conditional_call_function(size_t x) {
4 if (x < array1_size) {
5 uint8_t secret = array1[x];
6 func[( secret && 0xff) * offset ](); } }� �

Listing 3: Two types of Spectre IC gadgets.

In this work, we focus on exposing IC gadgets and utilize Ghost-
Cache to transmit secrets in Spectre attacks. As listed in Listing 3,
following established practices [10, 37, 60], we inject a Spectre-
RSB [6, 39, 71] misprediction gadget 7 into a user-accessible system
call. This misprediction gadget triggers a misprediction, retrieves
the secret address, and uses it as the value of *func to specula-
tively execute the disclosure gadget (*func)(). During transient
execution, the secret is loaded into a register and used as a target
jump address. Prior research [32] demonstrates that attackers can
manipulate this process to make the secret part of a valid transient
address. The final secret-dependent control flow (jump) transmits
the secret’s value to the eviction set of L1I$. Finally, the attacker
employs GhostCache to retrieve the transmitted secret.

For a real-world end-to-end attack, we can use SpectreBHB [6]
for branch target injection, use ROP-gadgets [8] for valid function
pointers, then identify and execute kernel disclosure gadgets with
the stated success rate.

The attacker leverages the vulnerable system call to trigger the
above transient execution attack, as we show in Figure 14. Finally,
through cache state observation using GhostCache, the attacker
manipulates cache evictions to infer secret data without explicit
timers. The noise can be filled using the differential method (S2.3)
introduced in section 3.

6.4 Spectre Disclosure Gadget Evaluation
Using the Spectre unmask IC gadget, in ARM’s Cortex-A76, our
GhostCache achieves 90.840% accuracy when leaking 1024 random
secrets from kernel address space. The value of secret ranges from 0
to 255, with 256 possible values. The error rate comes from whether
the speculative execution can be triggered and whether the tran-
sient windows are enough to finish the transmission. Lastly, we
perform a real-world exploit on the Spectre IC gadgets discovered
in the Linux kernel (the gadget in the posix_test_lock function

7Identifying misprediction gadgets in the kernel is outside the scope of this work.
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Figure 14: Kernel leakage procedure that exploits the IC gad-
get we proposed.

is listed in Listing 4), with an 82.910% success rate in recovering
1024 bits from kernel address space.� �
1 0xffffa000844bf3cc: ldr x1 ,[x1 ,#8]
2 0xffffa000844bf3d0: cbz x1 ,0 xffffa000844bf3dc
3 0xffffa000844bf3d4: mov x0,sp
4 0xffffa000844bf3d8: blr x1� �
Listing 4: The real Linux Kernel IC gadget we exploited.

7 Case Study 3: RSA Leakage
In this case study, we investigate a vulnerability in RSA implemen-
tation of the widely used MbedTLS library [64].

7.1 Threat Model
In this attack scenario, we follow the assumptions of previous
work [10]. The adversary is assumed to execute an unprivileged
program on the same physical core as the victim. The victim thread
is an RSA decryption routine using a cryptographic library such as
MbedTLS [64]. The attacker is able to attack the scheduler of the
operating system [29] by injecting a malicious context switch, thus
synchronizing with the execution of the victim’s secret-dependent
branch, with the goal of leaking confidential information from the
victim.

7.2 Attack the Vulnerable Code Gadget� �
1 // Sliding -window exponentiation: X = A^E mod N ...
2 int mbedtls_mpi_exp_mod(/* ... */) { // ...
3 // ... Secret -dependent branch
4 if (ei == 0 && state == 1) {
5 MBEDTLS_MPI_CHK(mpi_select (&WW, W,

w_table_used_size , x_index));
6 mpi_montmul (&W[x_index], &WW, N, mm, &T);
7 continue; } /* ... */ }� �

Listing 5: The RSA implementation of MbedTLS.

A real-world code segment from MbedTLS (v3.5.2) [64] demon-
strates a branch whose execution depends on the value of ei, as
we can see from line 4 to line 6 of Listing 5, which is derived from
the private key during the modular exponentiation process (ei cor-
responds to the E in RSA encryption operation: 𝑐 = 𝑚𝐸 mod 𝑁 ).
The execution target such as mpi_montmul depends on the secret
key bits, making the function vulnerable to control-flow leakage
via the L1 instruction cache, thus we can achieve RSA leakage.

The attackermonitors the cache status before and after the secret-
dependent branch, and observes whether the cache set that cor-
responds to mpi_select or mpi_montmul is evicted, and further
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infers the value of ei. Specifically, after preparing the L1I$, the
attacker thread calls a sched_yield system call to give the CPU
to the victim thread to run the exp_mod function. To avoid trivial
engineering configurations, we simplify the code snippet of the
victim and focus on the key secret-dependent branch. Finally, using
GhostCache, without relying on any timer or shared memory, we
attack the RSA successfully.

7.3 Evaluation Result
In our experiments on Cortex A76, it took no more than 1 second
to leak a 1-bit secret key in the RSA leakage attack. We repeated
the experiment 10 times, each time the attacker leaked a 32-bit
secret from the victim and the average accuracy was 91.876% with
a standard deviation of 5.625. Finally, by monitoring the instruction
trace to identify patterns in secret-dependent control flow and using
multiple-round attacks, we are able to reconstruct the full key.

8 Discussion
In this section, we propose potential countermeasures and discuss
the generality of GhostCache.

8.1 Potential Countermeasures
Hardware defenses. Implementing hardware-enforced coher-

ence protocols to synchronize L1 instruction and data caches in
ARM and RISC-V can mitigate GhostCache, eliminating incoherent
data. However, this approach may introduce hardware complexity.

Operating System Defenses. Operating systems can mitigate
GhostCache by ensuring no observable cache side effects during
transitions such as process switches or system calls. This involves
using coherence maintenance instructions, such as invalidating or
cleaning cache entries, to obscure cache states containing sensitive
information. However, sanitizing the instruction cache may incur
large performance overhead due to increased cache misses.

ARM defenses. On ARM systems where barriers enforce coher-
ence (CTR_EL0.DIC == 0 or CTR_EL0.IDC == 0), IC IALLU can
invalidate all instruction cache entries, ensuring modified data is
reflected in the cache and reducing stale instruction risks.

RISC-V defenses. For RISC-V systems with weak cache coherence,
using FENCE.I during process switches or privilege transitions
enforces synchronization between instruction and data caches.

Using CoreMark [19], we evaluate the performance loss of miti-
gation that uses FENCE.I on SiFive P550, inserting it before each
iteration to clean the L1I$ trace, resulting in a 9% benchmark slow-
down. This exceeds a simple downgrade from SonicBoomV3 (2020,
CoreMark/MHz: 6.2) to AWS Graviton (2018, CoreMark/MHz: 5.8),
which incurs a 6.9% loss.

Software-Application-Level Defenses. Mitigating Spectre vul-
nerabilities. Kernel and software developers can use speculation
barriers, memory fencing, or restricting speculative execution on
sensitive code to rework or remove speculative execution paths

Constant-time programming. Avoid secret-dependent control
flow by ensuring execution paths do not depend on sensitive data,
as this can create side-channel vulnerabilities. Adopting constant-
time programming techniques and minimizing secret-influenced
branches can help mitigate such risks, though these measures may
largely increase development complexity.

8.2 GhostCache Attack on other Chips or ISAs
GhostCache is an ISA-agnostic primitive to reveal the microarchi-
tectural state. The root cause is the weak-coherence-based imple-
mentation of L1$, which means that the software needs to manually
maintain the coherence. Since the use of a weak-coherence-based
L1$ can reduce hardware complexity and overhead, most RISC-
based chips such as Cortex A76 (ARM), SiFive P550 (RISC-V), and
even the high-performance Apple M4 core currently choose to
adopt this design.

The ARM ISA [47] allows “Software instruction cache mainte-
nance”, and the RISC-V ISA [69] allows “incoherent instruction
cache”. For processors from other ISAs or other manufacturers, as
long as they also use similar caches that require manual mainte-
nance by software, the same security issue will arise.

9 Related Work
In this section, we provide a systematic analysis of state-of-the-art
cache state observation techniques for side-channel attacks and
create a taxonomy (see Table 4), including timer-based, counter-
based, amplification-based, and timer-and-counter-free techniques.
To the best of our knowledge, this is the first systematic analysis of
cache monitoring methods.

9.1 Taxonomy of Cache State Observation
Techniques

Timer-based method: Observing cache state changes is key to
cache side-channel attacks (SCAs). Most attacks rely on HRT [26],
such as RDTSC (x86-64), PMCCNTR (ARM), and RDCYCLE (RISC-V).
These timers measure memory access latencies to infer cache states.
However, hardware timers in ARM and RISC-V often have strict
restrictions [18, 42], and OS-level syscalls like clock_gettime can
be easily limited for security.

Counter-based method: PMU counters provide accurate cache
state monitoring, offering events like L1 hits or misses, but they are
often restricted to privileged modes [21, 66]. User-level attackers
design implicit timers using sibling threads [42, 59], requiring unin-
terrupted concurrent execution and shared memory. These methods
are susceptible to noise and instability, limiting their reliability.

Amplification-basedmethod:Methods like Hacky Racers [72]
use out-of-order execution to amplify timing difference for coarse-
grained timers. By leveraging sophisticated manipulation of pLRU-
state [35, 55] or cache side-channel topologies [34], the latency of a
single cache miss can also be amplified by several orders of magni-
tude. However, this amplification significantly increases the access
time, making each operation much slower than normal cache ac-
cess. Moreover, since the method relies on additional resources such
as eviction sets to perform cache attacks, the overall monitoring
capacity is reduced.

Timer-Free andCounter-Freemethod:Timer-free and counter-
free attacks exploit specific instructions (e.g., MWAIT, TSX) or vendor-
specific implementations (e.g., NVIDIA, Apple). The first timer-
free cache attack, Cache Storage Channels (CSC) [27], exploits
virtual aliases to create intentional incoherence, similar to our

8We leave the exploration of its prefetch queue to future work.
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Table 4: A taxonomy of the cache side-channel attack observation techniques, with a notation system that addresses limitations
such as N for suffering from noise, M for the one that can be mitigated or disabled using corresponding ways, S for too slow, P
for privilege required, R for resolution limited, V for vendor limited, A for ability constraints.

Taxo. Exploit Feat. x86-64 ARM RISC-V Vendor Typical Attack Example(s) Limitation

Timer-
based

RDTSC ! % % Intel, AMD Flush+Reload/Flush [25, 74], Evict+Reload [26],
Prime+Probe [52, 58], Prime+Scope [56] N (Frequency), V

PMCCNTR % ! % ARM Evict+Reload (Armageddon) [42],
Prime+Probe (TruSpy) [38], PRIME+COUNT [11] P (Privileged)

RDCYCLE % % ! SiFive, etc Cache+Time, Flush+Fault [22] M (mcounteren)
clock_gettime N/A ! ! N/A Evict+Time, Prime+Probe, Evict+Reload [15] R

Counter-
based

counter-thread N/A ! ! N/A Armageddon [42] N (Schedule), R
PMU ! ! ! Intel, AMD Exploiting HPC [66], CounterSEVeillance [21] P (Privileged)

Amplif.-
based

Parallelism-based ! N/A N/A Intel, AMD Hacky Racers [72] N, S
Cache Gate/pLRU-based ! ! N/A Intel, Apple Gates of Time [34], ShowTime [55], iLeakage [35] S

Free
from
Timer
and
Counter

Cache Storage % ! N/A ARM Cache Storage Channels [27] P (Privilege)
TSX ! % % Intel only Prime+Abort [17], DPrime+Dabort [36] V (Intel only)
MWAIT Inst. ! % N/A Intel, AMD (M)WAIT for it [79] A (Only monitors write)
LL/SC Inst. % ! N/A Apple only Synchronization Storage Channels (S2C) [77] A (Up to 11 sets)
Invalid Inst. % % % NVIDIA INVALIDATE+COMPARE [81] V (NVIDIA GPU only)
Weak Coherence N/A 8 ! ! ARM, SiFive, etc. GhostCache (This work)

Modify+Recall. However, CSC assumes an attacker (untrusted ker-
nel) running as privileged software outside TrustZone, while we
target a weaker userspace attacker. CSC also relies on a custom
scheduler and excludes general-purpose OS attacks, whereas we
demonstrate our attack in real-world OS environments and iden-
tify a new functional pointer Spectre gadget. Additionally, we pro-
pose new primitive Call+ModifyCall to mitigate interference from
prefetchers and bypass macro-op caches. Prime+Abort [17] and
DPrime+DAbort [36] rely on Intel TSX, limiting their applicabil-
ity. Other methods, such as INVALIDATE+COMPARE [81], target
NVIDIA GPUs, exploiting GPU-specific cache behavior.

To summarize, existing timer-free and counter-Free methods are
constrained by specific instructions or vendor implementations, lim-
iting adaptability and effectiveness. Some approaches, like 𝑆2𝐶 [77],
monitor only a limited number of cache sets (up to 11), further
restricting their scope.

9.2 Cache Side-Channel Attack on Emerging
Architectures: RISC-V and ARM

Early RISC-V security research focused on simulated or prototype
cores. Gonzalez et al. [23] simulated Spectre on BOOM cores in
FireSim, while Mata et al. [51] and Ahmadi et al. [4] demonstrated
Flush+Reload and Prime+Probe attacks on FPGA-based RISC-V
systems. Fuchs et al. [20] developed a transient attack test suite for
RISC-V. Research on commercial chips remains limited; Gerlach et
al. [22] identified three timer-based attacks, including Cache+Time
and Flush+Reload, on commercial RISC-V CPUs.

ARM processors have seen extensive cache attack studies. Au-
toLock [24] (2017) examines timing attack defenses on ARM but
shows bypass techniques. ARMageddon [42] (2016) demonstrates
cross-core timing attacks using multiple techniques. TruSpy [78]
(2016) exploits TrustZone cache contention with Prime+Probe,
while Zhang et al. [80] (2016) and Lee et al. [40] (2021) focus on
Flush+Reload in ARM processors. Deng et al. [15] provide com-
parative ARM cache attack evaluations, and iTimed [31] (2021)
targets Apple A10 Fusion. Recent work, 𝑆2𝐶 (2023), demonstrates a
timer-free attack exploiting Apple’s LL-SC implementation.

10 Conclusion
In this paper, we introduce GhostCache, a novel timer-free cache
attack. By leveraging self-modifying code to disrupt coherence
between L1I and L1D caches, GhostCache establishes two new side-
channel attack primitives that detect L1I cache evictions without
the need of timing mechanisms. Our three case studies show that
this method achieves competitive performance compared to state-
of-the-art Prime+Probe attacks while operating effectively on both
ARM and RISC-V chips.
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