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Abstract—Performance Monitoring Unit (PMU) is a common
hardware module in modern processors that monitors the proces-
sor’s architectural and microarchitectural events (PMU events)
for CPU performance analysis and optimization. Vendors publish
PMU events in documents such as Intel’s Software Development
Manual (SDM) and ARM processor technical reference manuals.
In this paper, we report our findings that these documented PMU
events are only a very small portion of the PMU event space.
We define hidden PMU events as those that can be triggered
in the instruction’s execution but are not documented by the
vendors. The hidden PMU events may not be as useful as
the documented ones for CPU performance analysis. However,
they might introduce security vulnerabilities. We develop an
automated tool to traverse all the possible PMU events during
the execution of each valid instruction to locate the hidden PMU
events. On six Intel processors with different micro-architectures,
where there are about 307 documented PMU core events on
average, our tool finds an average of 17,361 hidden PMU events.
We further demonstrate the security implications in both defense
and attack of these hidden PMU events. Our experimental results
show that up to 6,613 hidden PMU events on the i7-6700 can
be used to detect transient execution attacks and 1,192 hidden
PMU events can be exploited for side-channel attacks.

Index Terms—Performance Monitoring Unit, Microarchitec-
ture Security, Transient Execution Attack

I. INTRODUCTION

Hardware Performance Counter (HPC) is a widely utilized

hardware monitoring tool in today’s computer architectures.

These counters can be used to measure CPU-level events,

including instruction execution, cache hits or misses, branch

prediction, and so on. HPC holds significant importance in

performance analysis, code debugging, and optimization. Most

modern processor vendors offer HPC support for their proces-

sors [1]–[3]. In the case of Intel processors, the functional unit

utilized to support HPC is known as the Performance Monitor

Unit (PMU) [3].

The Intel official documents disclose hundreds of PMU

events [4] (different on different architectures) for software

developers to measure various architectural and microarchitec-

tural events. Those events are beneficial in debugging codes

and improving performance. PMU has also been utilized for

security purposes such as malware detection and defense [5],

[6], microarchitectural attack detection [7]–[9], and reverse

engineering [10]–[13]. In addition, some evaluation tools have
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been designed using PMU for different application scenarios

such as PAPI [14], perf event [15], and VTune [16]. These

tools also provide ways for software developers to easily mon-

itor the execution process of their codes [17], [18]. Besides

being used for positive work, PMUs have been utilized to

speculate the keys of encryption algorithms such as AES

[19], RSA [20], and ECC [21]. In addition, Qiu et al. [22]

discovered that PMU counters not only record the behaviors of

genuinely committed instructions but also capture the actions

of transient instructions. They leveraged this characteristic to

create a new PMU-based side channel, based on which they

replicated the Foreshadow attack to compromise the security

of Intel SGX [23].

Intel provides a 32-bit Model Specific Register (MSR)

named IA32_PERFEVTSELx for configuring PMU [3], the

functions of every bit are illustrated in Fig. 1. The higher

16 bits specify the working model of PMU and the lower

16 bits are used for PMU event selection. In the lower 16

bits of this MSR, the EventSelect field determines the

general category of PMU events, while the UMask field

specifies the event selection conditions. The combination of

these 16 bits encompasses a substantial portion of all the pos-

sible PMU events. Theoretically, the complete event selection

space amounts to 216 possibilities. However, take Intel’s latest

Alderlake microarchitecture CPU as an example, there are

only 292 publicly available PMU events in the Intel Software

Development Manual (SDM) [4]. This represents a very small

subset of the entire PMU event space and leaves room for

numerous undocumented PMU events.

Zhao et al. [24] discovered a new contention-based side-

channel attack. They then utilize PMU to analyze the per-

formance and reverse engineer the vulnerability source of

their proposed side-channel attack. They found two un-

recorded PMU events in this process and named them

L1D.READ_REQS and L1D_BLOCKS.FALSE_DEPS. Nick

Gregory et al. [25] traversed the 216 PMU event space to find

PMU events that are Spectre-sensitive, and they eventually

came up with 81 unrecorded PMU events. However, their

work does not aim at hidden PMU events and therefore does

not delve deeper into research in exploring and exploiting the

hidden PMU events.

In this work, we systematically traversed the x86 instruction

set and meticulously recorded the PMU events triggered by



Fig. 1: Layout of IA32 PERFEVTSELx MSR [3].

each instruction. Our experimental results illustrate that there

are tens of thousands of undocumented PMU events across

various microarchitectures, which is a couple of orders of

magnitude more than the existing disclosed PMU events.

We designed a method to collect the hidden PMU events,

which traverses all the valid x86 instructions obtained by the

uops.info [26] dataset, and then observes the change in the

count of the entire event space after the execution of the

different instructions. We identify the hidden PMU events as

those recorded by their corresponding PMU counters but not

documented in the Intel SDM [3]. Through this approach, we

collected a large number of hidden PMU events on each of six

different microarchitectures (Skylake, Kabylake, Cascadelake,

Coffeelake, Haswell, and Alderlake) of Intel processors.

We conducted real experiments to demonstrate the effective-

ness of using these PMU events to detect transient execution

attacks or construct side-channel attacks. In the former, we

considered the well-known transient execution attacks includ-

ing Meltdown [27], Spectre [28], [29], and Zombieload [30]

attacks as the detect targets, and found that there are up to

6,613 available hidden PMU events on i7-6700 that can detect

these attacks. In the latter, we aim to implement these attacks

using the PMU side-channel attack proposed by [22]. The

experimental results show that the number of hidden PMU

events that can achieve the attack is 1,192.

In summary, this paper has the following contributions:

• We developed a method to automatically locate hidden

PMU events. The proposed method identified a large

amount (the average number is 17,361) of hidden PMU

events on each of the six Intel processors with different

microarchitectures.

• We utilized the collected hidden PMU events to detect

transient execution attacks. Through our real experiments,

we identified 454 events suitable for meltdown detection,

1,979 for spectre v1 detection, 4,488 for spectre v2 de-

tection, 3,696 for spectre v4 detection, 1,545 for zom-

bieload v1 detection, 761 for zombieload v2 detection.

• We employed the hidden PMU events to construct side

channels for microarchitecture attacks. Specifically, we

discovered 357 hidden PMU events suitable for building

side-channel for Meltdown, 1,094 for Spectre, and 139

for Zombieload.

II. BACKGROUND

A. Performance Monitor Unit

The Performance Monitoring Unit (PMU) is a crucial hard-

ware module embedded in modern processors. It consists of a

collection of performance counters responsible for recording

a wide range of hardware performance events that take place

at the CPU level during system runtime [31]. Intel categorizes

the hardware events supported by its performance counters

into two types: architectural performance events and non-

architectural performance events, also known as microarchi-

tectural events [3]. Architectural performance events refer to

events that have consistent behavior across processor archi-

tectures. Non-architectural performance events are specific to

the microarchitecture of the processor and demonstrate distinct

behavior across various microarchitectures. Furthermore, these

events may vary even further with processor enhancements.

Non-architectural performance events can be classified into

core events and uncore events. Core events refer to events on

the CPU logical core, while uncore events mean events outside

the CPU core. Additionally, starting with the Cascadelake-X

microarchitecture, offcore events are introduced, which are

specific types of core events requiring special configuration

[4]. In this paper, our focus will be exclusively on core events,

excluding offcore events and uncore events.

Intel offers users both fixed counters and programmable

counters for monitoring performance [3], [32]. The fixed coun-

ters are dedicated to tracking predetermined events such as

logical cycles, reference cycles, and others. The programmable

counters are supported by a set of one-to-one correspon-

dence event selection MSRs (IA32_PERFEVTSELx, shown

in Fig. 1) and performance count MSRs (IA32_PMCx). The

IA32_PERFEVTSELx MSRs start at address 186H and

occupy a contiguous block of MSR address space. Each

IA32_PERFEVTSELx register starting at this address cor-

responds to an IA32_PMCx register to start at 0C1H. To

obtain the value of the performance counter, Intel provides two

methods: Polling or Processor Event-Based Sampling (PEBS)

[3], [32].

a) Polling: The user selects the specified event by chang-

ing the value of IA32_PERFEVTSELx and then reads from

IA32_PMCx to obtain the number of times the event occurred.

For this purpose, Intel provides specific instructions (RDMSR,

WRMSR) to do reads and writes to the MSR.

b) PEBS: This is a sampling method based on the Per-

formance Monitoring Interrupt (PMI). IA32_PEBS_ENABLE

provides 4 bits of data indicating which IA32_PMCx overflow

condition to enable will trigger the PMI, resulting in the

capture of the PEBS record.

B. Side Channel Attacks

Within the microarchitecture, various shared resources exist,

including Cache, Translation Lookaside Buffer (TLB, exe-

cution ports, and more [33]. Through side-channel attacks,

the attacker does not directly target the victim’s data but



instead deduces secret information by analyzing unintended

side information (e.g., changes in voltage frequency, cache

timing, etc.) that the microarchitecture unintentionally leaks.

In microarchitecture, the most prevalent side-channel attacks

involve the exploitation of cache, such as Flush+Reload [34],

Prime+Probe [35], CacheBleed [36], and others. Additionally,

there are side-channel attacks that target other shared re-

sources, including TLBLeed [37], PortSmash [38], Binoculars

[24], etc. Moreover, there are side-channel attacks resulting

from contention or switching in the front-end decoding compo-

nent, such as SecSMT [39], Leaky Frontends [33], and others.

The fundamental principle behind these attacks often relies on

timing differences resulting from shared resource contention.

Qiu et al. [22] introduced a PMU-based side channel, where

the PMU captures and records diverse microarchitectural states.

By analyzing the PMU event counts, the attacker can deduce

the victim’s information.

C. Transient Execution Attacks

Transient execution attacks arise from aggressive optimiza-

tion techniques employed by modern processors to enhance

performance such as Out-of-Order Execution and Branch

Prediction. These techniques can result in the execution of

instructions that should not be executed, which is called

transient execution. Even though these transient instructions

are not officially committed, they can affect the microarchi-

tecture state. Attackers can exploit side channels to capture

these microarchitectural state changes and infer the victim’s

confidential data. Typical transient execution attacks include

Meltdown [27], Spectre [28], [29], Foreshadow [40], [41],

Zombieload [30], etc.

III. HIDDEN PMU EVENTS COLLECTOR

A. Motivation

As mentioned in Section I, PMUs are capable of capturing

specific types of hardware events in the CPU. Nowadays,

PMUs are extensively utilized in various work scenarios.

However, the events available for monitoring through PMUs

represent only a small portion of the entire event space. It

is crucial to investigate whether the hidden PMU events can

also be useful in these scenarios. Furthermore, PMUs play a

significant role in reverse engineering tasks, and it is worth

exploring whether Intel’s undisclosed PMU events hint at

the existence of undisclosed CPU hardware components. By

delving into these aspects, we can gain valuable insights into

the potential capabilities and hidden features of the CPU

architecture.

Furthermore, due to the fine granularity of PMUs, there are

potential security risks associated with them. An attacker could

exploit PMUs to detect processor data and instruction flows or

create side channels to leak sensitive information. Considering

the existence of numerous hidden PMU events, the security

risks they pose could be even more significant. Therefore, it

is crucial to thoroughly investigate and analyze hidden PMU

events, both in terms of their potential positive applications

and their potential negative implications for security.

B. Challenges

As we mention in Section I, the lower 16 bits of

IA32_PERFEVTSELx register in Fig.1 determines most of

the known PMU events. Therefore, we first consider traversing

this 216 event space. However, a mere traversal does not ensure

thoroughness and rigor in our investigation. Considering that

the PMU records the CPU’s behavior, which directly correlates

with the executed instructions. So, we endeavor to execute

different instructions to trigger different behaviors to cover

the entire hidden event space as much as possible. However,

we have also encountered some challenges in this process:

a) x86 Instructions Traversal: To collect hidden PMU

events, we attempted to execute all x86 instructions to trigger

as many PMU events as possible. However, the complexity of

the x86 instructions presented us with a substantial challenge.

We have compiled 5,492 instructions based on the uops.info

[26] dataset, which have different behaviors depending on

the processor mode and privilege level. In addition, the x86

architecture has evolved with numerous instruction set exten-

sions that mandate specific floating-point units and registers,

potentially varying across different CPUs. Moreover, there

exist multiple operand types for the same instruction, further

exacerbating the complexity of the instruction set as a whole.

Undoubtedly, the intricate and diverse nature of the x86

instruction set has presented us with numerous challenges.

b) Non-deterministic: Previous research by Weaver et

al. [42] has demonstrated that PMU counting inherently pos-

sesses non-deterministic characteristics and may lead to over-

counting, attributable to its architectural design. This non-

deterministic poses a significant challenge when attempting

to ascertain the validity of hidden PMU events, especially

when their counts approach zero during the collection pro-

cess. Regarding this non-deterministic nature, Das et al. [32]

have highlighted that works on malicious attack defense and

detection are more susceptible to such effects. This is due

to their reliance on detecting subtle hardware-level impacts

caused by attacks. Therefore, in section IV and V, we filter

out this non-deterministic by constructing microarchitectural

attack detection models and leveraging side-channel attacks

utilizing the hidden PMU events.

C. Collect Hidden PMU Events

To begin, we process the uops.info [26] data set. We strive

to confine the usage of registers within a limited range, which

facilitates operand filling. It is worth mentioning that certain

instruction extensions may necessitate the use of specific

registers. Therefore, we need to adapt them according to the

instruction extensions supported by the CPU. Furthermore,

careful consideration is given to the arrangement of jump

instructions. The jump target position is positioned after the

jump instruction to prevent dead loops within the program.

Finally, we compiled a list of 5,492 instructions.

Given the lack of detailed information regarding instruction

execution, it becomes necessary to address all potential ex-

ceptions that may arise during execution. The most effective

approach for handling exceptions is to leverage the Intel



TABLE I: Hidden PMU Collection Results.

Micro-Architecture CPU Compilation Success∗ Execution Success∗ Hidden PMU Events∗∗(≥) Documented Core Events∗∗

Sky lake i7-6700 3576 3484 20599 298

Kaby lake i7-7700 3574 3478 20230 298

Alder lake i9-13900k 3628 3529 12503 292

Cascade lake Xeon Silver 4210R 4724 4626 18438 322

Haswell Xeon E5-2678 v3 3558 3466 16996 338

Coffee lake Xeon E-2224 3580 3485 15401 298

* Total instructions tested is 5492. Instructions that Compilation Success but do not Execution Success mean they abort during execution due to exceptions.
** Only Core Events have been discussed in this paper.
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Fig. 2: Distribution of Umaks and EventCode for Hidden PMU Events on Different Microarchitectures.

Transactional Synchronization Extensions (TSX) [43], which

allows for efficient and speedy suppression of exceptions.

Unfortunately, because the success rate of transient execution

attacks can be greatly improved with TSX, many new Intel

CPUs do not support this extension. Therefore, we bind all

exception signals to custom exception handlers to prevent

program crashes.

Then, we proceed by populating a limited number of

registers with appropriate values or addresses, based on the

CPU’s supported instruction set extensions, to accommodate

the operand types of the instructions. Finally, we monitor

the changes in count within the 216 event space both before

and after the execution of each instruction. We record the

corresponding instructions and the events in which the count

is not equal to 0 and not in Intel’s officially public PMU list

[3], [4].

D. Collection Result Analysis

As shown in Table.I, We performed collection experiments

on six CPUs with different microarchitectures. This is one

of our collection results, which may fluctuate due to the Non-

deterministic PMU event counts, but will not change by orders

of magnitude. As emphasized in Section II, our collection is

done on the same logical core, so we are only concerned with

core events in this paper. Finally, We successfully compiled

3,412 instructions on the i7-6700 (Skylake) and collected

20,599 hidden PMU events. Even the least i9-13900k (Alder-

lake) still has 12,503 hidden PMU events.

However, we do not suppose that each of these PMU events

corresponds to a distinct microarchitectural behavior. For the

EventCode, we found that it is not continuous, this may mean

that these events do exist. In the case of UMask, its distribution

makes us wonder if it is determined only by specific bits.

For instance, when analyzing the hidden PMU event with

EventCode 0x6C on the i7-6700, we observe a consistent

incremental pattern in Fig. 2. Further analysis reveals that

its UMask values tend to follow a progressive pattern, with

values like 0x*1, 0x*3, 0x*5, 0x*7, 0x*9, 0x*B, 0x*D,

0x*F. From a binary perspective, it is noteworthy that the

lowest bit of the UMask values associated with these events

is consistently set to 1. Moreover, there are several other

instances, such as 0x9C, 0xBA, and others, that exhibit a

similar pattern. So we suspect that the value of UMask may



be determined by a specific bit.

IV. APPLICATION 1:DETECTING THE TRANSIENT

EXECUTION ATTACKS

To further showcase the effectiveness and the exploitability

of hidden PMU events, we aim to leverage these hidden PMU

events to detect existing transient execution attacks, such as

Meltdown [27], Spectre [28], [29], Zombieload [30].

A. Detection Method Design

In our detection approach, since we do not know the mi-

croarchitectural behavior corresponding to each hidden event,

we cannot select some specific events for multidimensional

detection as in previous transient execution detection ap-

proaches [7], [44]. Instead, we examine each hidden PMU

event and monitor its relationship with transient execution

attacks. For each attack, we collect the count changes for each

PMU event in the Clean, No-Attack, and Attack states.

The classifier is trained offline by a machine learning (ML)

algorithm and then analyzes the model training results. This

enables us to assess whether a particular hidden PMU event

can be utilized effectively for detecting a specific transient

execution attack.

B. Detection Experiment Setup

a) Data Collection: For each hidden event, we collect

the count of Clean, No-Attack, and Attack states on

the i7-6700 (Skylake). The Clean state refers to a clean

environment where only the victim process is running, to

simulate an environment where no malicious attacks exist. For

data collection in the Attack environment, we separately

have various transient execution attacks running on different

logical cores of the same physical core as the victim process,

and the monitoring program running on the same logical core

as the attacker process, for better data collection. The data

collection for each transient execution attack is independent.

Here we mainly consider 6 transient execution attacks, namely

spectre v1 [29], spectre v2 [29], meltdown(spectre v3) [27],

spectre v4 [28], zombieload v1 [30], and zombieload v2 [30].

These attacks are selected as representative examples to assess

the effectiveness of our detection approach and evaluate the

behavior of hidden events in the context of different transient

execution vulnerabilities.

Finally, to improve the capability to differentiate false

positives (FP), we conduct data collection in the No-Attack

environment. In this setup, we disable the attack primitive

of the attacker process while keeping the rest of the code

unchanged. We collect the data under the same settings as

in the Attack environment. Additionally, we simulate real

scenarios by engaging in activities such as browsing websites,

reading, and writing text files. To further enhance the ability

to distinguish FP, we incorporate stress tests into the system.

These stress tests include (1) a memory-intensive load that

executes memcpy to copy 2MB of data from a shared region

to a buffer, followed by memmove to move the data in the

buffer, and (2) a CPU-intensive load that performs complex

floating-point operations in a loop [7]. This additional data

helps us refine the accuracy and reliability of our detection

model.

b) Data Processing & Model Training: In the field

of classification, various machine learning models can be

used, such as logistic regression (LR) [45], support vector

machine (SVM) [46], [47], and more. Considering that our

task involves detecting transient execution attacks using a

substantial number of hidden PMU events (20,599 events for

each attack), we opt for the logistic regression algorithm due

to its relatively shorter training time. Logistic regression is a

linear classification algorithm that estimates the probability of

a given input using a Sigmoid function [45]. It is a straight-

forward and efficient algorithm with fewer parameters, making

it suitable for our scenario. While more complex algorithms

are theoretically possible, we prioritize LR as it serves as a

baseline to determine if attacks can be detected effectively.

If LR proves capable of detecting attacks, further exploration

with more sophisticated algorithms can be pursued.

Next, we proceed with data labeling. The PMU count

changes collected in the Attack environment are assigned a

label of 1, indicating the occurrence of an attack. Conversely,

data collected in other environments are labeled as 0, indicat-

ing the absence of an attack. Each type of attack is recorded

separately, and data is collected in multiple independent runs.

To ensure fairness and mitigate bias, we maintain an equal

number (2,000) of samples for both attack and non-attack

categories.

After that, we split the collected dataset into training data

(70% of the samples) and test data (30% of the samples).

The training data is utilized to train the logistic regression

model, while the test data is used for evaluating the model’s

performance. By analyzing the model’s performance on the

test data, we can assess the effectiveness of hidden PMU

events in detecting transient execution attacks.

C. Experiment Results

To comprehensively evaluate the performance of the de-

tection model, we employ several metrics in addition to the

commonly used Accuracy metric. These additional metrics

include Precision, Recall, FNR, FPR ,F1 Score, and

Area Under Curve(AUC). Precision measures the pro-

portion of true positive (TP) samples predicted correctly as

positive out of the total samples predicted as positive. It

indicates the model’s ability to avoid false positives (FP).

Recall, also known as the TP Rate or Sensitivity, measures

the proportion of positive samples that are correctly identified

as positive. It assesses the model’s ability to detect TP samples

effectively. FNR represents the proportion of FN to the

overall positive sample. FPR indicates the proportion of FP

to total negative samples which indicates the false alarm rate.

F1 Score is the harmonic mean of Precision and Recall. It

provides a balanced assessment of the model’s performance by

considering both Precision and Recall. A higher F1 Score

indicates better overall performance. AUC is a metric derived

from the Receiver Operating Characteristic(ROC) curve.
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Fig. 3: Transient Execution Attack Detection Model Evaluation.

1 zero_pmu();

2 if(xbegin()==(˜0u)){

3 asm volatile(

4 "cmp (%0), %1"

5 "jz equal"

6 "nop"

7 "jmp end"

8 "equal:"

9 " ins1 (eg. movq (%%rax),%%rax)"

10 "end:"

11 " ins2 "

12 :

13 :"r"(The address of Secret),

14 "r"(Controllable Variable V)

15 :

16 );

17 xend();

18 }

19 read_pmu();

Listing 1: Encoding Secret into PMU Side Channel.

The ROC curve illustrates the trade-off between Recall and

FPR at various classification thresholds. AUC measures the

overall performance of the detection model in distinguishing

between malicious and normal executions. A higher AUC

value signifies a more effective model in correctly classifying

samples.

We screened the detection models with Accuracy >

0.9, F1 > 0.9, FNR < 0.1, FPR < 0.1, AUC > 0.9 and

their PMU events Number, and then randomly sampled 400

points to draw a scatter plot as Fig. 3. As a result, we got 454

hidden PMU events suitable for meltdown detection, 1,979

for spectre v1 detection, 4,488 for spectre v2, 3,696 for spec-

tre v4, 1,545 for zombieload v1, and 761 for zombieload v2.

V. APPLICATION 2:IMPLEMENTING THE SIDE CHANNEL

ATTACKS

In order to demonstrate the potential security threat of

hidden PMU events, in this section, we attempt to recover

private data leaked by transient execution attacks using the

hidden PMU events to construct the side channel.

A. Encoding The Secret Data into PMU

The work conducted by Qiu et al. [22] revealed that certain

instructions executed within the transient window can impact

the PMU count. Building upon this observation, they devised

an instruction gadget capable of encoding confidential data

into the PMU side channel, as shown in Listing 1. First, the

side channel state is cleared, as in the first line. Then, in the

fourth line, a transient execution is triggered through a com-

parison operation between the secret data and a controllable

variable V. If the secret data is equal to V, the execution path

of the instructions changes, leading to the execution of ins1.

The PMU event associated with ins1 can be used to deduce

whether ins1 was executed or not by monitoring the change

in the PMU count. Exactly, if there is a change in the PMU

count, it indicates that ins1 has been executed. Based on this

information, we can infer that the secret data is equal to the

controllable variable V.

B. Threat Model

To demonstrate the potential security threat of hidden events,

we attempt to construct side channels to recover data leaked

by transient execution using the method described in Section

V-A. On the one hand, since RDMSR and WRMSR are privileged

instructions, this makes the PMU side channel only available

to privileged attackers. Thus in our threat model, the victim

is the data in the Intel SGX Enclave [23]. When the victim

is in a trusted execution environment (TEE), it is reasonable
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Fig. 4: The Accuracy of Recovering Leaked Data from Transient Execution Vulnerabilities Using Hidden PMU Build Side Channels.

to assume that the attacker has root privileges [23], [30], [40].

Furthermore, there are many legitimate and illegitimate ways

for an attacker to gain this privilege [48], [49]. To this end,

we reproduced the Zombieload [30] attack to steal data from

SGX. On the other hand, we also reproduced the Meltdown

and Spectre attacks, even though the attacker did not have

root privileges in their threat models. However, to demonstrate

the security threat of hidden PMU events, we take them into

account as well. Here we only read and write PMUs with root

privileges and do nothing to favor the attacker.

C. Attack Experiment Setup

We selected an i7-6700 (Skylake) processor with 32 KiB,

8-way L1 data cache, and SGX Extension as the victim

device for our experiments. Using the instruction gadget in

Listing 1 we successfully replicated three transient execution

attacks: meltdown [27], spectre v2 [29], and zombieload [30],

on this device. However, we were unsuccessful in trying to

reproduce spectre v1 [29]. A preliminary analysis suggests

that the presence of conditional branching instructions in the

gadget of Listing 1 may interfere with branch mistraining,

which is a crucial component of the spectre v1.

It’s worth noting that for the PMU Side Channel, iterating

through all the events and associated instructions is theoreti-

cally the best approach. However, based on the data in Table.I

of Section III, even if we set ins2 to a NOP instruction,

this would require approximately 3484 ∗ 20599 ≈ 7.1 ∗ 107

iterations with an average time of 0.4 seconds per iteration,

which would take about a year to complete. This is not an

acceptable timeframe. As an alternative, we attempt to record

the specific instructions that trigger a PMU event during the

collection process in Section III. We can significantly reduce

the iteration space to approximately 11 million iterations by

focusing on this subset of instructions. However, even with this

optimization, it would still take more than 50 days to complete

the traversal. To expedite the traversal process, we decide to set

ins1 as one or more memory access instructions. By focusing

on this specific type of instruction, we can limit the traversal to

only 20, 599 PMU events. As a result, the overall traversal time

is reduced to approximately one hour. While this approach may

sacrifice some precision, it still effectively demonstrates the

potential security threat posed by these hidden PMU events.

D. Experiment Results

Throughput and Accuracy are two significant metrics

used to evaluate side-channel attacks. The Throughput is

primarily influenced by factors such as the execution time of

the instruction gadget, the number of iterations, the exception

handling time, or the branch training time. In our experimental

setup, to mitigate the effects caused by system noise and non-

deterministic of PMU, for every byte of the secret data, we

perform the attack 10 rounds. For the meltdown attack with

PMU Side-Channel on i7-6700, the average Throughput can

reach 2.7 KB/s when utilizing Intel TSX [43] exception sup-

pression. For the spectre v2 attack, the average Throughput

is approximately 0.6 KB/s because the branch training takes

are longer than the exception processing. For the zombieload

attack, the average Throughput is 2.4 KB/s when using the

exception handler. If TSX exception suppression is used, it

can be increased to 12.2 KB/s.

Accuracy is another significant metric used to evaluate

the effectiveness of an attack. In our case, the Accuracy is

determined by the individual PMU events. To calculate the

Accuracy, we iterated through 20,599 hidden PMU events

and filtered out the event numbers with Accuracy ≥ 80%. We

then computed the average Accuracy based on these selected

events. For meltdown attacks, a total of 357 events out of

20,599 hidden PMU events had an Accuracy ≥ 80%. And

their average Accuracy is 99.10%. For spectre v2 attacks,

1,094 events satisfy the criteria with an average Accuracy

of 90.92%. For zombieload attacks on SGX, 139 events met

the criteria and the average Accuracy is 96.30%. To provide

a visual representation, we randomly sampled 30 samples for

every type of attack and displayed them in Fig. 4.

E. Mitigations

In this section, we will present some possible mitigations

and recommendations for constructing side-channel attacks

with hidden PMU events.

a) Hardware-based Mitigations: An obvious approach

would be to disable the PMU module altogether, but this would

make it extremely difficult for software optimizers. Therefore,

our recommendation is to change the counting behavior of

the PMU, e.g., by clearing out the counts within the transient

window, or by recording only the behavior on the CPU

architecture. However, this would make the behavior within



the CPU microarchitecture invisible, which would complicate

the cause analysis of various microarchitectural vulnerabilities.

b) Software-based Mitigations: On the software side,

since PMU side-channel attacks target data in the Intel SGX,

they can be protected by strengthening the SGX security

domain. A privilege bit can be added via a microcode update

to prohibit OS-level processes from accessing PMU counts

triggered within the TEE. This may increase the performance

overhead inside the TEE but will have less of an impact on

performance at other privilege levels.

VI. DISCUSSION & FUTURE WORK

In this paper, we designed a hidden PMU events collection

method on Intel CPUs. And we demonstrate their exploitation

potential and security threats by using these hidden events for

transient execution attack detection and side-channel attacks.

At the same time, some limitations need to be discussed.

A. Limitations

First, although this paper collects hidden PMU events, it

does not provide a detailed analysis of their corresponding

microarchitectural behaviors. Understanding the exact nature

and purpose of these hidden events could shed light on

their potential applications in various domains and unveil

additional security threats. The paper primarily focuses on

transient execution attack detection and side channel attacks

as applications of hidden PMU events. However, it is worth

investigating whether these events have broader applications or

implications in other domains, such as performance analysis,

energy optimization, or hardware security. These are the

limitations that we believe exist in this paper and the possible

extension of the work in the future.

B. Future Extensions

a) Hidden PMUs On Other Vendors’ CPUs: This paper

focused on exploring and exploiting the hidden PMU events

present in Intel CPUs. However, during our initial experiments,

we did come across undocumented PMU events on AMD

and ARM machines as well. Although we did not extensively

validate these events’ validity, it suggests the possibility of

hidden events existing in CPUs from other vendors. Therefore,

in future work, it would be possible to explore the hidden

events in CPUs from various manufacturers to gain a compre-

hensive understanding of their presence and potential security

implications across different hardware platforms.

b) Reverse-Engineering: In this study, we discovered a

significant number of hidden PMU events and established their

associations with various microarchitectural attacks. But we

did not conduct a detailed analysis of the specific behaviors

exhibited by these instructions. As we mentioned in Section

I, a PMU event is represented by 16 bits. In the collection of

events, we observed that most of the possible values appeared

in the higher 8 bits (UMask), while the lower 8 bits (Event

Select) were confined to a fixed range, which determines the

general class of events. This observation leads us to believe

that it is feasible and necessary to reverse-engineer the hidden

Event Select code in future research endeavors. By uncovering

and understanding the microarchitectural behaviors associated

with these hidden PMU events, we can more effectively exploit

their capabilities and gain valuable insights into their potential

security threats.

c) Specific bit decision UMask: As previously mentioned,

we observed that the change in UMask value has a certain

regularity. However, we do not consider each UMask value

to represent a distinct event condition. Instead, we suspect

that the CPU selectively examines a specific bit of the UMask

when checking the event number. Our analysis briefly explored

the distribution pattern of UMask in Section III-D, but further

investigation was not conducted. Further research is required to

explore the underlying principles of UMask selection. Indeed,

investigating the selection principles of UMask is crucial for

reverse engineering the hidden events.

VII. CONCLUSION

In this paper, we discovered a significant number of hidden

PMU events on different microarchitecture CPUs. Building

upon this finding, we have leveraged these hidden PMU events

to achieve the detection of various transient execution attacks

and to construct side channels by encoding private data into

PMU events during transient execution.

Our experiments have demonstrated that hidden PMU events

possess substantial exploitation potential and pose potential

security threats. Furthermore, at the end of our paper, we

analyzed the limitations inherent in our study and discussed

future research and exploration of hidden PMU events. In

summary, our research reveals the existence of undocumented

PMU events and showcases their potential for exploitation

space and security threats.
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