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Abstract—Side-channels are one of the major security threats
to processors, which use the unintentional leakage of time, power
consumption, and electromagnetic radiation from computers as a
basis for obtaining important secret data in the computers. The
Branch Target Buffer (BTB) and Branch History Buffer (BHB)
side-channels are the recently discovered side-channel vulnerabil-
ities that can be utilized to implement many high-threat hardware
vulnerability attacks like Spectre and BranchScope. However,
although there are many effective defense methods for BTB-
based and BHB-based side-channel attacks, the relative isolation
of each method from each other seriously affects the processor’s
performance and also increases resource consumption.

In this paper, we propose a secure conditional branching
architecture (we call it AutoGuard), which is a novel mitigation
mechanism for BTB-based and BHB-based Side Channel Attacks
(SCAs). Meanwhile, AutoGuard is also capable of effectively
mitigating Spectre attacks (including variant 1 and variant 2).
AutoGuard first ensures that only the correct addresses can
be executed during the conditional branch by address blocking
and adding partial instruction dependencies. Subsequently, Au-
toGuard modifies the microarchitectural execution process of the
partial conditional branch to safely execute instructions with the
assistance of the Return Stack Buffer (RSB). Finally, AutoGuard
determines the final instruction to be executed by determining
the instruction address at the top of the RSB stack and the top
of the execution stack. Through the above process, we design a
security gadget in AutoGuard that can automatically identify
and modify conditional branches to improve their security.
We successfully deployed AutoGuard on multiple processors
and Linux kernels. Through experimental evaluation, we find
that AutoGuard consumes fewer resources and has a lesser
performance impact than other existing BTB-based and BHB-
based side-channel attack protection methods.

Index Terms—Side-channel Attack, Micro-architecture, Tran-
sient Execution, Branch Instruction

I. INTRODUCTION

The processor is the hardware foundation of the computer
system, and its security vulnerability will directly affect the se-
curity of the entire computer system. With the widespread use
of computers, there is a huge pressure on the performance of
the processor. To solve this problem, modern processors have
introduced a variety of performance optimization techniques
to improve performance, such as out-of-order execution and
speculative execution. Although the performance of the pro-
cessor has improved significantly, processor design lacks the
consideration of security. Attackers can exploit the hardware
vulnerabilities introduced by these optimization techniques to
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achieve attacks and obtain secret data from the processor, thus
defeating the processor’s security protection from the inside.

Processor vulnerabilities are not available to leak data
directly and require the exploitation of side-channel attacks
to leak data [1], [2]. Side-channel attacks are a type of attack
method that uses the time, power consumption, and electro-
magnetic radiation of the hardware as a basis for obtaining
important and confidential information from the computer.
Cache side-channel attacks are the most exploited side-channel
attacks and there are some effective defenses against them [1],
[2]. In order to bypass the defenses against cache side-channel
attacks and achieve data recovery, attackers have discovered
that other microarchitectural components can also implement
side-channel attacks, such as the Branch Target Buffer (BTB)
and the Branch History Buffer (BHB). Existing studies have
shown that BTB and BHB also have corresponding side-
channel information and these can be exploited by attackers
to recover sensitive data [3], [4]. The most powerful Spectre
variant 1 attacks and variant 2 attacks can exploit the side-
channel information of these two components to implement
attacks [3].

Currently, there are several mitigation approaches based on
software and hardware that have been proposed for BTB-based
and BHB-based side-channel attacks. The main side-channel
attack protection methods presently available are adding ob-
fuscation, randomizing instruction delays, and preventing the
loading of sensitive information from shared microarchitec-
tural components, etc [5], [6]. Although there are many effec-
tive defense methods available, each is relatively isolated from
the other. The specialization of the different defense methods
causes a significant consumption of hardware resources and
also has a serious impact on processor performance. As a
result, it is necessary to design a generalized BTB-based and
BHB-based side-channel attack defense approach with low
hardware resource consumption and low performance impact.

In this paper, we propose AutoGuard, a new method that can
improve the security of conditional branch instruction and can
effectively defend against BTB-based and BHB-based side-
channel attacks while guaranteeing maximum performance.
Our approach starts with blocking the potentially executable
instructions and then loading the corresponding addresses into
different registers. After the conditional judgment is com-
pleted, secure instruction execution is realized in combination
with the Return Stack Buffer (RSB). Furthermore, we extend
the basic AutoGuard to a multi-branch structure to realize safe



access to multiple loops. Eventually, we successfully deployed
AutoGuard in LLVM and implemented a security gadget that
automatically identifies and modifies conditional branches to
improve their security.

We evaluate AutoGuard on multiple microarchitectures.
Our experimental results demonstrate that AutoGuard can
effectively mitigate BTB-based and BHB-based side-channel
attacks on the Intel and AMD processors. Our method can
save 34% execution time over the method based on 1fence
[7]. Compared with Retpoline [8], our method can additionally
mitigate BTB-based and BHB-based side-channel attacks with
a small performance difference.

In summary, this paper makes the following contributions:

« We propose a software-based secure implementation of
the conditional branch instruction (we call it AutoGuard)
that can effectively mitigate BTB-based and BHB-based
side-channel attacks while guaranteeing maximum per-
formance improvement and minimum computational con-
sumption. Meanwhile, AutoGuard also effectively miti-
gates Spectre attacks (including variant 1 and variant 2).

e« We implement AutoGuard on existing processors and
extend the basic single-branch structure of the safety
implementation to a multi-branch structure.

o We successfully deployed AutoGuard in LLVM and im-
plemented a security gadget that automatically identifies
and modifies conditional branches to improve their secu-
rity.

o We perform a detailed experimental evaluation of Auto-
Guard. The experimental results show that our approach
has less performance impact and consumes fewer hard-
ware resources than other approaches.

II. BACKGROUND
A. BTB-based Side-Channel Attacks

The Branch Target Buffer (BTB) stores the mapping be-
tween the address of the most recently executed branch
instruction and the target address [3]. Current research has
demonstrated that BTB can be utilized to implement side-
channel attacks, in which the attacker trains the branch target
buffer to incorrectly predict the branch from an indirect branch
instruction to the gadget address, which leads to speculative
execution of the gadget [3].

The BTB-based side channel attack is divided into three
main stages. In the first stage (data preparation), the attacker
trains the branch prediction results in advance for exploiting
faulty speculative execution in subsequent attacks and then
loads the secret data from memory. In the second stage
(data transfer), the processor speculatively executes instruc-
tions to transfer the secret data from the victim context to
the microarchitecture covert channel. In the third stage (data
recovery), the attacker recovers the secret data using side-
channel information stored in the microarchitecture layer.

B. BHB-based Side-Channel Attacks

The Branch History Buffer (BHB) is a cache that stores the
latest destination addresses for different branches and branch

contexts [3]. The address tags for this cache are computed from
the branch source address and the branch context. To create
the context, the branch predictor takes the source address and
the history of previously executed branches into account and
stores them as hashes in the BHB.

Since the target address of an indirect branch is only
available at runtime, modern processors try to predict the
branch target and speculatively fetch and execute instructions
at the predicted location [4]. Based on this, attackers can
exploit this behavior to implement BHB-based side-channel
attacks by misleading the attacked indirect branch to predict
the target address of the contained gadget, thus disclosing
secret data.

III. MOTIVATION AND THREAT MODEL

In this section, we describe the research motivation and
threat model.

A. Motivation

Currently, there are several mitigation approaches based on
software and hardware that have been proposed for BTB-
based and BHB-based side-channel attacks. Although there are
many effective defense methods available, each is relatively
isolated from the other. The specialization of the different
defense methods causes a significant consumption of hard-
ware resources and also has a serious impact on processor
performance. As a result, it is necessary to design a general-
ized BTB-based and BHB-based side-channel attacks defense
approach with low hardware resource consumption and low
performance impact.

B. Threat Model

In order to better study the defense approach of BTB-based
and BHB-based side-channel attacks, we have made corre-
sponding assumptions about the attack targets and scenarios
of exploiting side-channel attacks in this study, as described
in the following.

Attack Target. We assume that the attacker knows the
secret data memory address but does not have permission to
access it. Therefore, the attacker’s goal is to load the secret
data by utilizing speculative execution and then recover the
information.

Attack Scenario. To consider the generality of the attack,
we do not restrict the location of the attacker. The attacker
can attack across cores, can utilize hyperthreading, and can
even attack at a distant node. Our goal in these scenarios
is to effectively prevent leakage of the victim’s secret by
implementing secure conditional branch instructions. In the
next subsections, we will describe in detail the implementation
of secure conditional branch instructions to design an efficient
defense mechanism against BTB-based and BHB-based side-
channel attacks.

IV. AUTOGUARD

This section describes the design, implementation and de-
ployment details of AutoGuard.
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Fig. 1

The working mechanism of AutoGuard. @ Address blocking. @ Load the block address into different registers. ® Determine the branch of

subsequent execution and load the next instruction of the call instruction into the RSB. @ Load the address of the branch of subsequent execution into the
execution stack. ® Call the ret instruction. ® Compare the instructions at the top of the two stacks. @ Execute the final executed instruction.

A. Design

The design principle of AutoGuard is to effectively defend
against BTB-based and BHB-based side-channel attacks while
ensuring maximum processing performance and minimizing
computational resource consumption. The overview of Auto-
Guard is shown in Fig. 1.

void *p =
asm

&&end,
volatile (
"mov %0,
"mov %1,
"cmp $1,
"cmove %%rbx,
"call 2f\n\t"
"l:\n\t"
"pause\n\t"
"2:\n\t"
"mov %$%rax,
"ret\n\t"

*q = &&content;
$srax\n\t"
$srbx\n\t"

$2\n\t"

$srax\n\t"

(%%rsp) \n\t"

"r"(p), "r"(q), "r"(condition)
t) i
content:
temp &= array2[arrayl[x]
end:

asm volatile ("nop");

* 512715

Listing 1. Pseudocode for AutoGuard

Mitigating BTB-based Side-Channel Attacks. As de-
scribed in Section II, the traditional BTB-based side-channel
attack exploits processor speculative execution to load the
victim’s secret data. As a result, there are two security risks
in the execution of conditional branch instructions that cause
the attacker can successfully implement the BTB-based side-
channel attack. The first risk is that the conditional branch
instruction discloses the address of each instruction during
execution, which can be used directly by the attacker. The
second risk is that the conditional branch instruction has a
speculative execution optimization technique, which may lead
to the early execution of instructions that do not satisfy the

conditions, and these instructions may be attack instructions
that access sensitive data.

In order to solve the security risks caused by the speculative
execution of conditional branch instructions, we provide two
optimizations to the original conditional branching instruc-
tions. The first optimization is to block the instructions that
may be executed. We first divide the instructions executed on
the different conditional branches into two code blocks. When
executing the conditional branching judgment, the addresses of
these two code blocks are loaded into the registers respectively.
This method can ensure that in the subsequent execution
process, we only operate on the address of the block, but not
on the address of the instruction within the block. By utilizing
this method, we can also prevent the attacker from directly
accessing the secret address.

The second optimization is to use the cmp+cmove+jmp
instruction to replace the original instruction execution process
[9]. Conditional instructions such as cmov convert conditional
branches into sequential code, thus effectively converting
control dependencies into data dependencies [9]-[11]. The
cmp instruction will add execution dependency to cmov
instruction, so that the cmove instruction must be executed
after the cmp conditional judgment is completed. Therefore,
the cmove instruction will be forced to serialize during
the execution process, which can prevent the attacker from
loading the victim’s secret data before the completion of the
conditional branching judgment. When the cmove instruction
has finished executing, we use the Jjmp instruction to jump
to the address of the subsequent instruction. However, we
found that utilizing the jmp instruction opens a transient
window that can be trained, which can be utilized by the
attacker to implement the BHB-based side-channel attack. In
the following subsection, we will describe how to avoid the
threat of BHB-based side-channel attacks introduced by the
jmp instruction.
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Mitigating BHB-based Side-Channel Attacks. To han-
dle the threat of BHB-based side-channel attacks caused by
the jmp instruction, we replace the jmp instruction with
the call+ret instruction. The idea is to select a secure
instruction (e.g., the pause instruction) to replace the vul-
nerable instruction, and then load the address of this secure
instruction into the Return Stack Buffer (RSB) by utilizing
the call instruction. When executing the ret instruction,
the processor will speculatively execute the address of the
security instruction loaded into the RSB earlier. With this
design, we can effectively prevent attackers from utilizing the
transient window opened by the jmp instruction to obtain data
to mitigate the threat of BHB-based side-channel attacks.

Our method has similarities with the Retpoline [8] method
in mitigating Spectre variant 2 attacks, but there are also
some differences. First, the main difference is that our method
can additionally mitigate the attack of BTB-based and BHB-
based side-channel attacks. Second, our method stalls in the
RSB for a shorter time than Retpoline. Finally, since the
instructions submitted to the stack by AutoGuard satisfy the
execution conditions, our approach can minimize the state
rollback caused by incorrectly speculated execution.

void *p = &&end, *gq = &&content, *pg = &&elseif;
asm volatile(
"mov %0, %%rax\n\t"
"mov %1, $%$%rbx\n\t"
"mov %2, %%rcx\n\t"
"cmp $1, $3\n\t"
"cmove $%$%rbx, %%rax\n\t"
"call 3f\n\t"
"l:\n\t"
"cmp $1, %4\n\t"
"cmove $%rcx, %%rax\n\t"
"call 3f\n\t"
"2:\n\t"
"pause\n\t"
"3:\n\t"
"mov $%rax, (%%rsp)\n\t"
"ret\n\t"
"r"(p),"r"(q),"r" (pq), "r" (condl), "r" (cond2)
t) i
content:
temp &= array2[arrayl[x] = 512];
elseif:
asm volatile ("nop");
end:

asm volatile ("nop");

Listing 2. Pseudocode for 3-branch AutoGuard

B. Implementation

AutoGuard Implementation. In Section IV-A, we intro-
duce the design idea of AutoGuard in detail. According to
the design idea, we implemented AutoGuard on multiple x86
processors and Linux kernels, and the specific implementation
is shown in Listing 1. The first step is to block the instruc-
tions. We begin by blocking the instructions in both cases
of conditional branches (lines 16-19). The second step is to
perform BTB-based side-channel attack mitigation (lines 5-
6). We utilize the cmp instruction to add a dependency to
the cmove instruction to prevent the attacker from loading

the victim’s secret data by using the conditional branch’s
speculative execution. The third step is to perform BHB-based
side-channel attack (lines 7-12). With the call instruction,
we can load the pause instruction into the RSB. With the
instruction at line 11, we push the address of the block of
code we want to execute onto the stack. When we reach line
12, the ret instruction takes the address from the top of the
RSB stack and compares it to the address pushed onto the
stack at line 11. When the two addresses are not the same,
the processor assumes that the RSB has made an error in its
speculative execution and chooses to execute the instruction
pushed into the stack at line 11. In this way, we can control the
transient execution window during RSB speculative execution
and prevent the attacker from realizing the attack.

3-Branch AutoGuard Implementation. In the previous
subsection, we described the implementation of AutoGuard
on multiple x86 processors and Linux kernels. On this basis,
we enhance the safety of the multi-branch conditional branch
instruction by extending the basic branch structure to a multi-
branch structure based on the implementation of AutoGuard,
as shown in Listing 2. We divide the three branches into three
code blocks and load the addresses of these blocks into three
registers. Then, we load the address that satisfies the execution
condition into the stack. Finally, the processor continues to
execute subsequent instructions.

C. Deployment

We successfully deployed AutoGuard on the Linux system.
Our choice of compilation toolchain was based on Clang/L-
LVM 17, and all libraries used in our tests were compiled
using the AutoGuard compiler, which supports both static and
dynamic linking to the protected application. We also designed
a gadget that can automatically identify conditional branching
instructions and modify unsafe branching instructions to safer
alternatives. We have also successfully deployed it in the
LLVM compilation environment, where it can be invoked via
compilation options.

V. EVALUATION

In this section, we present the evaluation scheme design and
evaluation results of AutoGuard.

A. Setup

We evaluate the security and performance of the AutoGuard
by comparing the following approaches: unmitigated, the
method based on 1fence [7] and Retpoline [8]. Unmitigated
means that no mitigation schemes for the side-channel attacks
are employed. The method based on 1fence is to force the
serialization of read instructions so that the processor must
perform the data read operation after the conditional judgment
is completed. AutoGuard is our proposed method. Finally,
Retpoline is an effective way to mitigate Spectre variant 2
attacks using RSB. In the following subsections, we will
describe the evaluation in detail.



B. Evaluation of Security

We evaluate the security of AutoGuard by deploying it to
multiple processors of x86 architecture, and the experimental
results are shown in Table I. By observing Table I, we can
conclude that AutoGuard can effectively mitigate BTB-based
and BHB-based side-channel attacks on both Intel and AMD
processors, which fully verifies the security of our method.

TABLE I: Results of the AutoGuard security evaluation.

CPU Vendors  BTB SCAs  BHB SCAs  Spectre vl & v2
i7-6700 Intel v v v
i7-7700 Intel v v v
i5-7300u Intel v v v
i9-13900 Intel v v v

i5-12450H Intel v v v
Ryzen 5 5600G  AMD v v v
Ryzen 5 7600 AMD v v v

During our experiments, we found that Intel’s Control-
flow Enforcement Technology (Intel CET) [12] also has some
security features. The principle is to use ecrh64 instruction
to increase the security of indirect branches, but the response
speed is slow. Furthermore, we can still recover some secret
data normally during the experiment with Intel CET enabled,
so Intel CET is not completely secure. Compared with Intel
CET, our method will have a faster response speed, and we
can guarantee that no secret data will be recovered.

C. Performance of Synthetic Workloads

We first evaluate the performance of AutoGuard with
reference to the synthetic benchmark of the SpectreGuard
[13] method. The benchmark consists of two parts, the first
part is the client workload (S). The second component is
the background communication activity (C) using the AES
algorithm for data encryption.
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Fig. 2. Execution times of synthetic workloads. (90S/10C indicates that 90%
of the time is spent in the first component and 10% in the second component.)

Fig. 2 shows the execution time of the synthetic workload
for AutoGuard. By observing Fig. 2, we can find that Auto-
Guard significantly better than the method based on 1fence
[7]. It is experimentally verified that our method can save 34%
execution time over the method based on 1 fence. Moreover,
in multiple cases, the performance of AutoGuard is closer to
Retpoline [8], which is the most effective method to mitigate
the Spectre variant 2 attack. However, our method can mitigate

not only Spectre variant 2 attacks, but also BTB-based and
BHB-based side channel attacks and Spectre variant 1 attacks.

D. Performance of Conditional Branch Instructions

We use two schemes to test the performance of the con-
ditional branching instructions implemented in AutoGuard.
The first scheme is to test the time consumed by the overall
program when a large number of instructions are executed.
We executed about 30000 instructions and executed them 100
times to calculate the average. The second scheme is the
average time taken to execute an if branch instruction. We
counted the execution time of 10000 identical instructions and
took the average. To prevent micro-architectural components
such as Cache from affecting the evaluation, we remove noise
by flushing micro-architectural residual states before each
instruction execution.
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Fig. 3. Time evaluation of conditional branch instructions.

Fig. 3 shows the results. By observing the results, the per-
formance of AutoGuard is superior. Compared to the method
based on 1fence, our method will save 39% of the overall
time consumed in executing 30000 instructions and 24% of
the time in executing each instruction on average. Since our
method forces a shorter waiting time, this will minimize
the performance loss. Compared to Retpoline, our method
consumes a longer time, but it is also in our expectation.
This is because AutoGuard needs to consume some time
in mitigating BTB-based side-channel attacks, which is not
possible with Retpoline.

E. Performance of SPEC2017 Workloads

We also conducted experiments using a set of SPEC
CPU2017 benchmarks. We tested the performance measure-
ments of the unmitigated, 1 fence-based approach, Intel CET
and our proposed approach in our experiments, and the results
are shown in Fig.4.

The results show that our approach is effective and that there
is a performance-security trade-off when using AutoGuard.
For real-world application environments, we can further reduce
the overhead by not modifying the conditional branches that
do not involve sensitive data, and only modifying the insecure
conditional branches.
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VI. RELATED WORK

The work related to our work is Switchpoline [14], the first
automated Spectre-BTB and Spectre-BHB software solution
that protects C and C++ userspace applications on ARMvS8
from all variants of Spectre-BTB and Spectre-BHB. Our
proposed AutoGuard differs from it in two ways, the first
difference is the different target of protection. We focus our
defense around side-channel attacks, whereas Switchpoline
defends against Spectre attacks. The second difference is the
chip architecture; our approach works on Intel and AMD x86
architectures, while Switchpoline works on ARMvS architec-
tures. As a result, our work is more generalizable.

VII. CONCLUSION

In this paper, we propose AutoGuard that can effectively

mitigate BTB-based and BHB-based side-channel attacks.
AutoGuard can make security considerations and protections
while ensuring maximum performance optimization. We uti-
lize the cmp+cmove instruction to mitigate the secret loading
from conditional branch prediction and utilize the call+ret
instruction to mitigate the transient execution window opened
by the jmp instruction to avoid introducing new attacks.
We deployed our approach on Intel and AMD processors to
evaluate the performance of our approach by experimentally
comparing it with existing methods based on 1fence [7],
Retpoline [8] and Intel CET [12]. Our evaluation results show
that our approach can effectively mitigate BTB-based and
BHB-based side-channel attacks without consuming excessive
hardware resources.
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