
Whisper: Timing the Transient Execution to Leak Secrets and
Break KASLR

1Yu Jin, 1Chunlu Wang, 1,3Pengfei Qiu∗, 2Chang Liu∗, 1Yihao Yang, 2Hongpei Zheng
2Yongqiang Lyu, 1Xiaoyong Li, 4Gang Qu and 2,3Dongsheng Wang
1Key Laboratory of Trustworthy Distributed Computing and Service (BUPT), Ministry of Education

2Tsinghua University, 3Zhongguancun Laboratory, 4University of Maryland, College Park

ABSTRACT
The vulnerabilities of transient execution have been exploited in
many side-channel attacks (SCA). We report Whisper, a novel
transient execution timing (TET) side channel, which is based on
the execution time difference of transient execution under different
conditions. We develop TET version of SCAs including Meltdown,
Zombieload, and Spectre-RSB that use Whisper as covert channel
to leak information. We further propose TET-KASLR to break the
kernel address space layout randomization (KASLR) mechanism
under the protection of KPTI and FLARE. These attacks are simple
to implement and can bypass the existing mitigation methods
because the TET side channel relies on execution time that can
be conveniently obtained by architectural level timing analysis. We
demonstrate the correctness and effectiveness of these attacks on
various x86-64 CPUs. The root cause of Whisper is analyzed with
our toolset built on performance monitor unit (PMU) and potential
defense against Whisper is also discussed.

1 INTRODUCTION
Out-of-order execution and speculative execution have been widely
deployed in modern processors, in which some instructions may
not be committed due to the misprediction or exception caused by
the proceeding instructions. The execution of these non-committed
instructions, which is known as transient execution, cannot change
the architecture state, but may leave a record on the cache or other
microarchitectural resources. Numerous attacks such as Meltdown
and Spectre have exploited this feature to leak secret data [13, 14,
17, 19, 21]. The cache within the memory subsystem is the most
commonly exploited microarchitectural resource to transmit secrets
fetched during transient execution, and several mitigation strategies
against transient execution attacks concentrate on preventing the
cache from leaking secrets [25, 27]. To circumvent these strategies,
researchers have explored other microarchitectural components as
the covert channel to transmit data during transient execution [2, 3].
However, it is considerably more challenging to implement these
non-cache-based attacks because of the increased complexity of set-
ting up the covert channels using other specific microarchitectural
resources. In this paper, we propose a novel timing side channel based
on the timing of transient execution (ToTE), which can be conveniently
used not only to build covert channels, but also to implement various
side-channel attacks (SCA).

Our research is inspired by the time difference of the Jcc (Jump
if Condition Is Met) instructions during transient execution. Specif-
ically, we observe that even when a Jcc instruction is not com-
mitted, its misprediction during transient execution leads to an
additional pipeline stall. Moreover, the delay caused by this stall

∗Corresponding author

can be observed outside the transient execution phase through
timing analysis of the Transient Execution Timing (TET). We refer
to this as Whisper because it can be utilized to transmit invisible
data fetched during transient execution.

We propose a list of novel side-channel attacks, including TET-
Meltdown (MD), TET-Zombieload (ZBL), and TET-Spectre-V5-RSB
(RSB), where the secrets fetched utilizing Meltdown [17], Zom-
bieload [21] and Spectre-V5-RSB [14] are transmitted usingWhisper
as the covert channel. More importantly, we propose TET-KASLR
to break the kernel address space layout randomization (KASLR), a
popular mechanism to safeguard the kernel from attacks such as
code reuse. TET-KASLR is so effective that it breaks KASLR even
in meltdown-resistant CPUs with KPTI [11] enabled and FLARE
[4] deployed, the latter is considered as the state-of-art defense.
These attacks are successfully implemented on various CPUs1 and
they bring new perspectives to the security research of transient
execution.

To investigate the root cause of Whisper, we develop a perfor-
mancemonitor unit (PMU) [6, 16] toolset for in-depth analysis of the
microarchitectural behaviors when exploiting Whisper. Through
automated testing, we find that numerous PMU events reflect the
different behaviors under different time lengths of Whisper in
Intel and AMD CPUs. By analyzing the events, we find that the
branch misprediction in transient execution will lead to complex
instruction stream conflicts, causing stalls in the frontend and
the execution engine in the CPU microarchitecture. Besides, we
find that states of the memory subsystem also have effects on
Whisper. For example, the load from an unmapped virtual address
causesmultiple data translation lookaside buffer (DTLB) loadmisses
that will decrease the disturbance from the memory subsystem to
Whisper. We have tested that at least 3 types of Jcc instructions
can be used, e.g. JE/JZ, JNE/JNZ, and JC instructions can lead to
such a time difference. We believe that all the conditional jump
instructions of x86 chips could be exploited and Whisper can be
implemented on all of the tested Intel and AMD CPUs.

In summary, our contributions are as follows:
(1) We discover Whisper, a novel timing-based side channel on

transient execution timing (TET), and develop a PMU toolset
to investigate the root cause of this side channel.

(2) We propose several side-channel attacks based on Whisper
that directly exploit the execution time of transient execution
to disclose secret data or breach the deployed defenses.

(3) We successfully implemented the TET covert channel and
side-channel attacks including Meltdown, Zombieload, and
Spectre-RSB on a variety of x86 CPUs.

1Responsible Disclosure: We have disclosed our work and results to the affected
vendors. Intel acknowledged this on June 8, 2023.

DAC ’2024, June 23-27, 2024, San Francisco, CA, USA

(4) We propose TET-KASLR to break KASLR on multiple Intel
CPUs with the protection of KPTI and/or FLARE.

2 BACKGROUND AND RELATEDWORK
2.1 Microarchitecture Side-Channel Attacks
The modern CPU’s microarchitecture (𝜇arch) is an intricate system
comprised of key components: the frontend, which is responsible
for instruction fetch and decode; the out-of-order execution back-
end, which manages the out-of-order execution of instructions;
and the memory subsystem, which temporarily stores frequently
accessed data and instructions via cache. Despite its complexity,
security vulnerabilities have been unearthed across most 𝜇arch
components, including the Spectre attack [13] stemming from the
branch predictor unit in the frontend, port contention side-channel
attack [2] in the backend, and the cache side-channel attack [26] in
the memory subsystem.

Kernel address space layout randomization (KASLR) enables
address space randomization for the kernel image by randomizing
where the kernel code is placed at boot time. It was deployed
on Windows in 2007, macOS in 2012, and Linux in 2014 [4] to
safeguard the kernel from code reuse attacks like return-oriented
programming (ROP) [22]. Due to its popularity and critical role
in modern operating systems security, KASLR has been a prime
target for 𝜇arch side-channel attacks for over a decade. The first
attack was unveiled in 2013 [12]. In response, Kernel page-table
isolation (KPTI) [11] was proposed in 2017 as a universal mitigation
by making better isolation between user space and kernel space
memory. To addressing the residual exempted pages gaps in KPTI,
FLARE (2020) [4] emerged as a state-of-the-art defense. However,
new KASLR attacks continue to surface, such as Entrybleed (2023)
[18] and AVX Timing (2023) [5].

Both the Entrybleed and AVXTiming attacks abuse the exempted
pages of user-kernel isolation to break KASLR. The former exploits
syscall and prefetch instruction, while the latter exploits AVX
instruction. Instead of using any specific instructions, our work
focuses on breaking KASLR with behavioral timing, instead of
depending on specific instructions.
2.2 Transient Execution Attacks
Since Meltdown [17] and Spectre [13] were disclosed in 2018, tran-
sient execution attacks have become a hot topic in hardware secu-
rity. TheMeltdown [17] exploits transient execution in delayed fault
handling to access secret data, while the Spectre [13] leverages the
misprediction of branches predict unit (BPU), and Spectre-V5-RSB
[14, 19] exploit the return stack buffer within BPU. The Zombieload
[21] is a type of Microarchitectural Data Sampling (MDS) attack
that utilizes the speculative buffer forwarding in the processor to
extract temporary data. New transient execution attacks, such as
Downfall (2023) [20], are still being reported.

In transient execution attack, the processes and their data are
invisible and will be rolled back at the architectural level, necessi-
tating the need for a side channel to transmit, receive, and decode
the secret data. The most commonly used side channel in transient
execution attacks is flush+reload [26]. Consequently, there has been
some research focused on mitigating transient side effects to render
the side-channel ineffective [25, 27] or detect attacks based on side-
channel characteristics [9, 15]. As our TET side channel exploits

stall in the core and is unrelated to the cache, the cache-based
mitigation cannot address the TET side channel, which we have
partially verified with our PMU toolset.

3 WHISPER: A TRANSIENT EXECUTION
TIMING SIDE CHANNEL

3.1 Motivation
As the data within transient execution is invisible, a transient
execution attack needs to find some side channel as a covert channel
to transmit the data. Current research mainly focuses on probing
the status of 𝜇arch components during or after the transient exe-
cution by timing the non-transient execution of some instructions,
especially cache in the memory subsystem[13, 20]. Although these
approaches have been successful, effective mitigation could be
developed targeting directly the 𝜇arch component they utilize as
the covert channel[15, 25].

To the best of our knowledge, this is the first attempt to inves-
tigate whether the execution time of transient execution (ToTE)
can be leveraged to develop transient execution attacks. It is based
on our observation that the system’s transient state or behavior
could influence ToTE and the impact can be observed through
timing analysis outside of transient execution. There are two major
advantages of our approach. First, the transient execution timing
(TET) side channel exists and thus it reduces, if not completely
avoids, the cost of constructing a covert channel with other 𝜇arch
component. Second, since the TET side channel does not rely on
any 𝜇arch components, it will be hard, if not impossible, for the
existing mitigation mechanisms to detect such a side channel.

3.2 Discovering the TET Side Channel
The execution time of an instruction depends on many factors
including data, instruction, cache miss/hit, pipeline, etc. In our
experiments, we observe that ToTE remains constant regardless
of the data, instruction, and whether the transient access address
is in the cache or not. However, we notice that data and control
flow events may cause a timing difference of transient execution
on different conditions (see the bottom of Figure 1b).

Figure 1 shows the gadget of the TET side channel on the Jcc
(Jump if Condition Is Met) instruction and the result. The Figure 1a
shows the gadget of TET. We get ToTE via recording the times-
tamps before and after this gadget through RDTSC. We use function
transient_begin [4] either starts an Intel TSX transaction or
sets up a signal handler to suppress exceptions. Line 3 is the key
code of the TET Block, which we use to trigger Jcc during the
transient execution caused by line 2. We iterate through the values
of test_value from 0 to 255 in batches, and record the ToTE for
each iteration. Executing multiple batches allows us to construct a
frequency plot of ToTE, visualized in Figure 1b. In the highlighted
region within the red box, it becomes non-trivial that the ToTE
surpasses others when Jcc is triggered. This observation is further
supported by the subsequent argmax plots. As a result, at the
architecture level, we can observe the difference in ToTE caused by
different jump conditions.

With this observation, we propose the TET side channel, which
leaks data or control flow information during transient execution.
We will analyze the root cause of the TET side channel in section 5

� �
1 if (transient_begin ())
2 *(char*)(0x0); // Transient Block Start
3 if (test_value == 'S') asm ("nop");
4 transient_end (); // Transient Block End� �

(a) The gadget that to be timing.

(b) Timing observation when condition is met in ’S’.

Figure 1: Gadget of TET and result.

and report that many instructions besides Jcc can lead to this
side channel. We can leverage the TET side channel for transient
execution attacks such as Meltdown, Zombieload, and Spectre-V5-
RSB. We also discover an attack to break KASLR. Details of these
attacks is provided below in section 4.

3.3 What’s New in TET Side Channel?
As numerous covert channel and side-channel attacks (SCA) have
been discovered, we compare the representative ones with our TET
SCAs in Table 1 using categories expanded from Binoculars [28].

Table 1: Comparison of Side Channel Attacks.

Type Probe Architecture Transient-Only
Stateful Stateless

Direct
Cache (e.g. Flush+Reload [26])

BPU [8]
Port Contention [2, 3]

AVX [5], EntryBleed [18]
TET-MD, TET-ZBL

TET-RSB

Indirect
TLB

(e.g. TLBleed [10], AnC [24]) Binoculars [28] TET-KASLR

In Table 1, direct refers to the attacks where results come directly
from the victim’s micro-operations. Stateful means that there is a
persistent state change during the attack. Stateful SCAs, especially
cache-based attacks, can be represented by a three-step model,
state initial step, side effect step, and probing step [26]. It is known
that the state change could be easily exploited and detected [15].
On the contrary, stateless channels been considered more difficult
to exploit [28], and stateless SCAs will be difficult to detect or
represent through a unified behavioral model. Most stateless SCAs
are contention-based [2, 3, 28], where constructing the required
contention synchronization is challenging.

Our proposed SCAs based on TET side channel are listed in
the last column of Table 1. They are all stateless and hence ro-
bust against defenses. As we have discussed earlier, ToTE can
be observed through architectural timing analysis, significantly
reducing the implementation cost. TET SCAs are also transient-
only, meaning that the information delivery during the attack does
not depend on the changes in architectural state or the contention
of microarchitectural components. So there is no need to change
the architectural state within transient execution. As far as we

know, TET side channel is the first transient-only covert channel
for transient execution attacks. To summarize, our TET SCAs are
stateless and transient-only, hence stealthy and easy to construct.

4 REAL-WORLD EXPLOITATION
4.1 Experiment Setup and Result
We summarize our experimentation in Table 2. All the tested ma-
chines running Ubuntu with Linux Kernel. Our experiments reveal
that for 1k random bytes, the throughput of TET-CC could achieve
500B/s with an error rate of less than 5% at i7-7700, and the TET-MD
can reach up to 50B/s with an error rate of less than 3% at i7-7700,
and the TET-RSB can reach up to 21.5 KB/s with an error rate of
less than 0.1% at i9-13900K. The TET-KASLR can break the KASLR
in an average of 0.8829 s (n=3, 𝜇 = 0.0036) at i9-10980XE.

4.2 Threat Model and Assumption
We assume an unprivileged attacker could execute arbitrary instruc-
tions on the KASLR-enabled local machine. The attacker knows
the CPU model and kernel image’s constant offsets, the TLB can
be evicted or invalid by other methods. For TET-MD and TET-
ZBL, there is another process that runs on the same machine as
a victim. We assume that the CPU has hardware vulnerabilities
like Meltdown and Zombieload, but they have deployed state-of-art
attack detection based on cache behavior. The attacker’s target is to
gain secret data within the victim’s memory stealthily. In the case
of breaking KASLR, the attacker’s target is to find out the offset of
KASLR to launch code reuse attacks.

4.3 TET for Transient Execution Attacks
4.3.1 TET-Meltdown (MD). We implement the TET-MD by using
TET as the covert channel in the Meltdown attack. The attack is
composed of two phases. In the first phase, we trigger transient
execution and trigger Jcc instruction if the secret data obtained is
equal to the test value. In the second phase, we record the execution
time of the transient execution. Finally, by analyzing ToTE, we can
obtain the value of secret data as we have shown in Figure 1. In
our analysis method, we count the argmax of ToTE after traversing
around the test value from 0 to 255. The argmax of the counting
result is the secret value.

4.3.2 TET-Zombieload (ZBL). In the case of the original Zom-
bieload attack, the aggressive forwarding within the microcode
assisting faulting load during a page fault enables attackers to
retrieve stale data from the victim from the line fill buffer. Then the
attacker extracts this stale data out of the transient via flush+reload
cache covert channel [21]. In TET-ZBL, the attacker extracts the
stale data through TET via jump if the in-flight data is met with
a test value, instead of the flush+reload. Contrary to TET-MD, it
is interesting that the ToTE becomes shorter if the Jcc is triggered.
Finally, by analyzing the time of ToTE like TET-MD, the value of
stale secret can be obtained.

4.3.3 TET-Spectre-V5-RSB (RSB). We have preliminarily verified
that through TET, we can extract the secret within the transient
execution of Spectre-RSB. As we show in Listing 1, we make a
function call on line 4 and jump to line 7. Line 5 will be pushed to
return stack buffers (RSB) as the speculated return address. In lines

Table 2: Environment and experiments.!means that we successfully achieved the attack,%is the opposite. ? means not verify.
CPU 𝜇-arch Microcode Kernel PMU-based Analysis TET-CC TET-MD TET-ZBL TET-RSB TET-KASLR
Intel Core-i7-6700 Skylake 0xf0 4.15.0-213 TET-CC, TET-MD ! ! ! ! !

Intel Core-i7-7700 Kaby Lake 0x5e 5.4.0-150 TET-CC, TET-MD ! ! ! ! !

Intel Core-i9-10980XE Comet Lake 0x5003303 5.15.0-72 TET-KASLR ! % % ? !

Intel Core-i9-13900K Raptor Lake 0x119 5.15.0-86 - ! % % ! ?
AMD Ryzen 5 5600G & 5900 Zen 3 0xA50000D 5.15.0-76 TET-CC ! % % ? %

8 to 10, we modify the return address and flush the address where
the return address is stored to increase the transient window length.
When executing retq, the Spectre-RSB, which is caused by RSB
incorrectly predicts, will issue a transient execution that returns to
line 5 and performs Jcc operations that depend on the secret value.
If a branch misprediction occurs in the transient execution caused
by RSB, the entire transient time will be reduced like TET-ZBL.
Through the final time analysis, we can obtain the value of the
secret data that is obtained within TET-RSB.� �
1 for (test_value = 0; test_value <= 255; test_value ++)
2 start_time = rdtsc();
3 lfence (); // ---- TET -RSB Block Start ----
4 asm ("call 1f;");
5 if (test_value == *(secret)) // Access secret and Jcc
6 asm ("nop;");
7 asm ("1: nop;"
8 "movabs $2f , %%rax;"
9 "mov %%eax , (%%rsp);"

10 "clflush (%%rsp);"
11 "retq;" // RSB misprediction
12 "2:;" ::: "rax");
13 lfence (); // ==== TET -RSB Block End ====
14 spend_time = rdtsc() - start_time;
15 if (max_time < spend_time)
16 max_time = spend_time , argmax = test_value;� �

Listing 1: Pseudocode for TET-RSB

4.4 Covert Channel for SMT
As the exception would cause pipeline flush, we can abuse it to build
a covert channel between two simultaneous multithreading (SMT).
The sender (Trojan) thread triggers page fault and suppresses it
through the signal handler to send ’1’, otherwise, send 0, while the
receiver (spy) just records the time of the nop loop. By distinguish-
ing the nop loop time, the spy can analyze and obtain the data sent
by the Trojan. Our prototype verification speed was 1B/s with an
error rate lower than 5% in Core i7-7700. Using the evaluate tools
from SecSMT [23], the preliminary throughput could achieve 268
KB/s though with a 28% error rate. We leave speed up with high
accuracy and further exploit to future work.

4.5 TET-KASLR attack: Breaking KASLR
As transient execution is caused by triggering page faults of access-
ing illegal addresses, we explore how different address types such
as illegal mapped or unmapped addresses influence the ToTE. We
notice that if the address that triggers the exception is mapped, the
ToTE will be shorter than unmapped, and the pipeline stall caused
by Jcc will be absent. For the root cause of this evidence, as we
referred to previous research [12] and the Table 3, we doubt that
Intel’s CPUs will trigger the loading of TLB entries for mapped
addresses, even for illegal access without permission. But access to
an unmapped address will not be able to trigger the real loading
of TLB entries from the cache which extends the page walk and
reduces the interference to observe pipeline stall.

Exploiting TET’s ability of detecting mapped addresses, and
the fixed mapped location of the Linux kernel image is within
the interval 0xffffffff80000000-0xffffffffc0000000 with 4-
KiB alignment [5], we find that the protection of KASLR can be
compromised by mapping detection within this range. The attacker
can flush or evict [12] the TLB and then conduct a TET-KASLR probe
at potential addresses’ outset until discovering the first mapped
address, which marking the initiation of the kernel image address.
Consequently, we successfully break KASLR in Intel i7-6700, i7-
7700, and i9-10980XE.� �
1 mfence ();
2 asm ("mov %0, %%rbx; movq (%1), %%rax; sub (%2), %%rbx;"
3 :: "r"(test_num), "c"(invalid_addr), "r"(& secret):);
4 asm ("jz 1f; jmp 2f; 1: nop;");
5 printf("you can not see me");
6 asm ("2: nop; mfence;");� �

Listing 2: Pseudocode transient block for TET-KASLR

Breaking KASLR with KPTI enabled. Since KPTI still retains the
necessary kernel mappings at user addresses, we can use this
remnant trampoline at fixed offset 0xe00000 to break KASLR after
enabling KPTI. In i9-10980XE, we traverse the 512 possible offsets of
KASLR and successfully detect the location of the KPTI trampoline
within 1s. We further use the TET-KASLR to bypass FLARE [4], a
state-of-the-art defense against currently known KASLR breaks.

Breaking KASLR in Virtualization Environments. Our empirical
shows that using TET-KASLR could even break KASLR successfully
in the Docker environment (Docker version 24.0.1, build 6802122,
runc runtime) in i9-10980XE.

5 ANALYSIS OF WHISPER
5.1 Method
We use PMU to analyze the TET because the PMU has some events
that can reflect the behavior of the front end, execution engine, and
storage subsystem. Since manual analysis and testing hundreds
of PMU events are a daunting task and challenge, we designed an
automated testing toolset for better and more convenient analysis.

We divided our analysis using this toolset into three stages, as
shown in Figure 2, preparation stage, online collection stage, and
offline analysis stage. In the first stage of collecting PMU events that
can be used for analysis, we used the data provided within Intel’s
Perfmon and Linux Perf tools to obtain all possible PMU event
records. In the following stage, we can obtain a large amount of
raw data that can be used for analysis. This raw data can be filtered
out by simple differential methods to filter out the irrelevant parts.

Based on differential filtering of PMU experimental results, we
obtained PMU events related to transient timing differences and
produced an in-depth analysis. We selected the critical events and
listed their counter value in Table 3.

PMU
Traversal Util

Target Env

PMU
and Timing

Records

Online Collection Stage Offline Analysis Stage

TTE-MD-Victim

TTE-MD

TTE-CC

PMU Records
Parser and Filter Util

Differential
Records

Normal
Records

Further
Human AnalysisPoC Code

Preparing Stage

RDPMC and
RDTSC

Pin Insert

PMU-Events Source
- Intel Perfmon
- Linux Perf

PMU
Event Code Util

Retry if
not good

Figure 2: Analysis flow using PMU toolset.

5.2 Microarchitectural Level Analysis for TET
We performed experimental evaluations on various processors
(Table 2) and used the result (Table 3) to address the following
research questions: (RQ1) How does the frontend affect the ToTE?
(RQ2) How does the backend affect the ToTE? (RQ3) How does
the memory subsystem affect the ToTE?

5.2.1 The True Negatives Result. Firstly, through the result of CY-
CLE_ACTIVITY. CYCLES_MEM_ANY event from Table 3, we ruled
out the impact of the memory-related stall.

5.2.2 Analysis of Frontend. Weobserved the counter for two undoc-
umented events in skylake chips named BR_MISP_EXEC.INDIRECT
and BR_MISP_EXEC.ALL_BRANCHES will increase when Jcc in-
struction is triggered. Also, the cycles that no 𝜇ops executed will be
increased when Jcc is triggered. So we suspect that it is the stall side-
effect from misprediction in frontend within transient execution
that leads to the timing difference, shown in Figure 3. In addition,
we also observed that the instruction from the decode stream buffer
(DSB, a.k.a. micro-operation cache) is decreased, and more 𝜇ops
will be delivered to backend from micro-instruction translation
engine (MITE, a.k.a. legacy frontend). This gives Answer to RQ1:
Resteer of BPU misprediction causes transient stall.

Frontend Backend
Rename/

Allocation/
Retire Reorder

Secheduler/RF
Reservation Station (RS)

Int Register File

Vector Register File

Instruction
Fetch

Macro-Op Byte
Queue

Decoder

I-cache Decode Stream Buffer
(a.k.a. Micro-Op Cache)

Branch
Predict Unit

(BPU)

D-cache

Port0

Port0

Port0

Port0

Port0

Port0

1. Backend-issued resteer (e.g. Page Fault), cost hundreds to thousands of cycles

2. Frontend-issued resteer, cost a few to ten cycles

Micro-
Op

Queue

To
TE

(c
yc

le
)

Frequency of ToTE, 5000 samples

Frontend-issued resteer within backend-issused resteer

Only backend-issused resteer

ID

ID

ID

ID

I-cache block

I-cache block

I-cache block

μop

μop

μop

μop

μop

μop

reg, eflags

xmm, ymm, zmmMITE

Figure 3: Fronted-issued resteer within transient execution.

5.2.3 Analysis of Pipeline and Backend. Summarizing the PMU
events about the pipeline and backend of Table 3, we can see that
resource-related stalls occur in the pipeline, the number of mi-
crocode instructions sent by the frontend to the backend decreases,
and the backend’s reserved stack waits for the frontend to send
𝜇ops. Again, our suspicions are reflected. Hence, we have Answer
to RQ2: The resource related stall of the pipeline.

Table 3: Key performance monitor counter values.

CPU & Scene Event Name Jcc not Trigger Jcc Trigger

Core i7-6700
TTE-CC

BR_MISP_EXEC.INDIRECT 0 1
BR_MISP_EXEC.ALL_BRANCHES 0 2
RESOURCE_STALLS.ANY 15 21

Core i7-7700
TTE-CC

BR_MISP_EXEC.INDIRECT 0 1
BR_MISP_EXEC.ALL_BRANCHES 0 2

Core i7-7700
TTE-MD

IDQ.DSB_UOPS 119 115
IDQ.MS_DSB_CYCLES 33 26
IDQ.DSB_CYCLES_OK 54 43
IDQ.DSB_CYCLES_ANY 76 60
IDQ.MS_MITE_UOPS 77 97
IDQ.ALL_MITE_CYCLES_ANY_UOPS 35 45
IDQ.MS_UOPS 228 208
UOPS_EXECUTED.CORE_CYCLES_NONE 110 116
RESOURCE_STALLS.ANY 15 21
CYCLE_ACTIVITY.STALLS_TOTAL 320 331
UOPS_EXECUTED.STALL_CYCLES 325 332
CYCLE_ACTIVITY.CYCLES_MEM_ANY 142 141
INT_MISC.RECOVERY_CYCLES_ANY 24 29
INT_MISC.CLEAR_RESTEER_CYCLES 27 39
UOPS_ISSUED.ANY 334 319
UOPS_ISSUED.STALL_CYCLES 394 404
RS_EVENTS.EMPTY_CYCLES 202 218

Ryzen 5 5600G
TTE-CC

bp_l1_btb_correct 493 511
bp_l1_tlb_fetch_hit 914 938
de_dis_uop_queue_empty_di0 182 195
de_dis_dispatch_token_stalls2.retire_token_stall 4 84
ic_fw32 661 690

Core i7-6700
Transient
Execution Flow

UOPS_ISSUED.ANY 684 603
INT_MISC.RECOVERY_CYCLES 19 15
ICACHE_16B.IFDATA_STALL 2 0

CPU Event Name unmapped mapped

Core i9-10980XE
TTE-KASLR

DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK 2 0
DTLB_LOAD_MISSES.WALK_ACTIVE 62 0
ITLB_MISSES.WALK_ACTIVE 19 0

5.2.4 Analysis of Memory Subsystem. We observed that if the
virtual address target of illegal access is mapped to a physical
address, it impacts the timing of the transient execution (ToTE).
Specifically, it will make ToTE longer. Furthermore, we observed
that when ToTE becomes shorter and the timing difference from
the misprediction of Jcc would be unobservable, some related PMU
events change, as listed in Table 3. This suggests Answer to RQ3:
The TLB missing could extend the ToTE.

5.2.5 Analysis of Transient Execution Flow. We study branch reach-
ability in transient states and show the control flow graph of the
experiment in Figure 4. For UOPS_ISSUED.ANY. We analyze that
the Jcc not trigger path will encounter a fence, which hinders the
issuance of subsequent 𝜇ops. In contrast, the trigger path does not
meet a fence, resulting in the issuance of an increasing number of
𝜇ops. This event confirms the existence of the trigger path ➂. If
the number of nop instructions preceding the mfence is increased,
such that the not trigger path does not encounter the mfence before
the rollback, the opposite result is obtained, with fewer 𝜇ops being
issued in the trigger path. This could be attributed to the branch
rollback occurring in the trigger path, causing a certain delay in the
issuance process. For INT_MISC.RECOVERY_CYCLES, we analyze
that in the trigger path, the presence of stage ➁ causes a temporary
pause in the dispatch unit, suggesting the occurrence of additional
recovery stall within the transient window.

6 SECURITY DISCUSSION
6.1 Deficiency of existing defenses
TET shows that it is not enough to mitigate microarchitecture
vulnerabilities via detecting or blocking covert and side channels

cmp
je equal
nop
...
nop
mfence
equal:
nop
...
nop

Jcc trigger Jcc not trigger

cmp
je equal
nop
...
nop
mfence
equal:
nop
...
nop

①
②

③

④

①

②

other instructions: rdtsc; rdpmc;

Transient
Execution

Retired

Retired

rdpmc;rdtsc;
xbegin;
faulty load

rdpmc;rdtsc;
xbegin;
faulty load

Figure 4: Control flow graph for the Transient Execution.

that rely on the specific microarchitectural components as observ-
ing the execution time of transient execution does not need these
components. We demonstrate that KPTI and FLARE are no longer
sufficient to protect KASLR. Nor is the method of replacing AVX
instructions [5] as the attacker can exploit the TLB’s vulnerable
behavior in completely different ways.

6.2 Software-based Mitigation
For TET-MD and TET-ZBL, the KPTI and the microcode updates re-
leased by Intel are efficient mitigation. To mitigate TET-KASLR, one
can use FGKASLR [1], which reorders individual kernel functions
such that even when the offset of the kernel address is exposed, the
attacker is still unable to pinpoint the specific functions based on
their relative addresses. However, such mitigation comes with high
performance overhead.

6.3 Hardware-based Mitigation
Our findings indicate that TLB entries should only be created if
the access permission check is passed. Otherwise, it may introduce
vulnerable side effects to the operating system. While the imple-
mentation of a USER/KERNEL-separated TLB or the security TLB
[7], has the potential to fully mitigate TET-KASLR and other TLB-
related vulnerabilities, it might be expensive and less practical to
replace the implementation of current hardware.

7 CONCLUSION
We report a novel timing side channel based on the execution time of
transient execution. Using such side channel, we have successfully
implemented many known side-channel attacks (SCA) including
Meltdown, Zombieload and Spectre-RSB. More importantly, we
show that KASLR under the state-of-the-art protection of KPTI and
FLARE can also be broken with the proposed transient execution
timing (TET) side channel. We verify on commercial CPUs that the
proposed TET SCAs are stealthy and easy to construct.

ACKNOWLEDGMENT
The authors of BUPTwere supported in part by the National Key Re-
search and Development Program of China (Grant No. 2023YFB440
3000), Beijing Natural Science Foundation (Grant No. 4242026), and
the Fundamental Research Funds for the Central Universities (Grant
No. 2023RC71). The authors of Tsinghua University were supported
in part by the National Natural Science Foundation of China (Grant
No. 62072263) and Tsinghua University Initiative Scientific Research
Program.

REFERENCES
[1] Kristen Carlson Accardi. 2020. Function Granular KASLR. https://lwn.net/

Articles/824307/.
[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida

García, and Nicola Tuveri. 2019. Port contention for fun and profit. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 870–887.

[3] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. Smother-
spectre: exploiting speculative execution through port contention. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
785–800.

[4] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl, and
Daniel Gruss. 2020. KASLR: Break It, Fix It, Repeat. In 15th ACM Asia Conference
on Computer and Communications Security (ASIACCS).

[5] Hyunwoo Choi, Suryeon Kim, and Seungwon Shin. 2023. AVX Timing Side-
Channel Attacks against Address Space Layout Randomization. In 2023 60th
ACM/IEEE Design Automation Conference (DAC). 1–6.

[6] Intel Corporation. 2022. Intel® 64 and IA-32 Architectures Software Developer’s
Manual.

[7] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. 2019. Secure tlbs. In Proceedings
of the 46th International Symposium on Computer Architecture. 346–359.

[8] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry
Ponomarev. 2018. Branchscope: A new side-channel attack on directional branch
predictor. ACM SIGPLAN Notices 53, 2 (2018), 693–707.

[9] Xaver Fabian, Marco Patrignani, and Marco Guarnieri. 2022. Automatic Detection
of Speculative Execution Combinations. In CCS.

[10] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
leak-aside buffer: Defeating cache side-channel protections with TLB attacks. In
27th USENIX Security Symposium (USENIX Security 18). 955–972.

[11] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, ClémentineMaurice,
and Stefan Mangard. 2017. Kaslr is dead: long live kaslr. In Engineering Secure
Software and Systems: 9th International Symposium, ESSoS 2017, Bonn, Germany,
July 3-5, 2017, Proceedings 9. Springer, 161–176.

[12] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In 2013 IEEE Symposium on Security
and Privacy. 191–205. https://doi.org/10.1109/SP.2013.23

[13] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
S&P.

[14] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the Return
Stack Buffer. In WOOT.

[15] Congmiao Li and Jean-Luc Gaudiot. 2022. Detecting Spectre Attacks Using
Hardware Performance Counters. IEEE Trans. Comput. (2022).

[16] AMD Limited. 2023. AMD64 Architecture Programmer’s Manual, Volumes 1-5.
[17] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In Usenix Security.

[18] William Liu, Joseph Ravichandran, and Mengjia Yan. 2023. EntryBleed: A
Universal KASLR Bypass against KPTI on Linux. In Proceedings of the 12th
International Workshop on Hardware and Architectural Support for Security and
Privacy. 10–18.

[19] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative Execution
Using Return Stack Buffers. In CCS.

[20] Daniel Moghimi. 2023. Downfall: Exploiting Speculative Data Gathering. In 32th
USENIX Security Symposium (USENIX Security 2023).

[21] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,
Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad : Cross-Privilege-
Boundary Data Sampling. In CCS.

[22] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-into-
libc without Function Calls (on the x86). In 14th ACM Conference on Computer
and Communications Security (CCS).

[23] Mohammadkazem Taram, Xida Ren, Ashish Venkat, and Dean Tullsen. 2022.
SecSMT: Securing SMT Processors against Contention-Based Covert Channels.
In 31st USENIX Security Symposium (USENIX Security 22). 3165–3182.

[24] Stephan Van Schaik, Kaveh Razavi, Ben Gras, Herbert Bos, and Cristiano Giuffrida.
2017. RevAnC: A framework for reverse engineering hardware page table caches.
In Proceedings of the 10th European Workshop on Systems Security. 1–6.

[25] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher
Fletcher, and Josep Torrellas. 2018. Invisispec: Making speculative execution
invisible in the cache hierarchy. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 428–441.

[26] Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A high resolution,
low noise, L3 cache side-channel attack. In 23rd USENIX Security Symposium
(USENIX Security 14). 719–732.

[27] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W Fletcher. 2019. Speculative taint tracking (stt) a comprehensive
protection for speculatively accessed data. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 954–968.

[28] Zirui Neil Zhao, Adam Morrison, Christopher W Fletcher, and Josep Torrellas.
2022. Binoculars: Contention-Based Side-Channel Attacks Exploiting the Page
Walker. In 31st USENIX Security Symposium (USENIX Security 22). 699–716.

https://lwn.net/Articles/824307/
https://lwn.net/Articles/824307/
https://doi.org/10.1109/SP.2013.23

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Microarchitecture Side-Channel Attacks
	2.2 Transient Execution Attacks

	3 Whisper: A Transient Execution Timing Side Channel
	3.1 Motivation
	3.2 Discovering the TET Side Channel
	3.3 What's New in TET Side Channel?

	4 Real-world Exploitation
	4.1 Experiment Setup and Result
	4.2 Threat Model and Assumption
	4.3 TET for Transient Execution Attacks
	4.4 Covert Channel for SMT
	4.5 TET-KASLR attack: Breaking KASLR

	5 Analysis of Whisper
	5.1 Method
	5.2 Microarchitectural Level Analysis for TET

	6 Security Discussion
	6.1 Deficiency of existing defenses
	6.2 Software-based Mitigation
	6.3 Hardware-based Mitigation

	7 Conclusion
	References

